perfSONAR
ESCC
Indianapolis IN
July 21, 2009

Joe Metzger, Brian Tierney
ESnet/LBNL
Measurement Recommendations

- White Paper has been posted at:
 - http://fasterdata.es.net/ps_howto.html
 - This is a draft
 - I am expecting additional community input and will continually refine this document.
Measurement Recommendations

• Deploy perfSONAR tools
• At Site border:
 – 1 Bandwidth system, 1 latency system & several other services (Utilization, NDT, etc)
• Near significant network resources
• Use it to:
 – Find & fix current local problems
 – Identify when they re-occur
 – Set user expectations by quantify your network services
Typical Campus Deployment
Soft Network Failures

- Soft failures are where basic connectivity functions, but high performance is not possible.
- TCP was intentionally designed to hide all transmission errors from the user:
 - “As long as the TCPs continue to function properly and the internet system does not become completely partitioned, no transmission errors will affect the users.” (From IEN 129, RFC 716)
- Some soft failures only affect high bandwidth long RTT flows.
- Hard failures are easy to detect & fix, soft failures can lie hidden for years.
Deploying a perfSONAR measurement host in under 30 minutes

- Using the PS Performance Toolkit is very simple
 - Boot from CD
 - Use command line tool to configure
 - what disk partition to use for persistent data
 - Network address and DNS
 - User and root passwords
 - Use Web GUI to configure
 - Select which services to run
 - Select remote measurement points for bandwidth and latency tests
 - Configure Cacti to collect SNMP data from key router interfaces
PS-Performance Toolkit Components

- hLS
- perfAdmin
- perfSONAR BOUY
- pSB MA
- Bwctl
- nuttcp
- iperf
- owamp
- Pinger MA
- Pinger
- ping
- SNMPMA
- cacti
- NDT
- NPAD

Support Applications
Provides a perfSONAR Web Service
Low Level Measurement Tools

What is missing from the picture?
Backup Slides

- The following slides were from the measurement BOF at Joint Techs.
Measurement Recommendations

• Deploy perfSONAR tools

• At Site border:
 – 1 Bandwidth system, 1 latency system &
 several other services (Utilization, NDT, etc)

• Near significant network resources

• Use it to:
 – Find & fix current local problems
 – Identify when they re-occur
 – Set user expectations by quantify your
 network services
High Performance Networking

• Most of the R&E community has access to 10 Gbps networks.

• Naive users with the right tools should be able to easily get:
 • 200 Mbps/per stream between properly maintained systems
 • 2 Gbps aggregate rates between significant computing resources

• Most users are not experiencing this level of performance
 • “There is widespread frustration involved in the transfer of large data sets between facilities, or from the data’s facility of origin back to the researcher’s home institution. “ From the BES network requirements workshop:

• We can increase performance by measuring the network and reporting problems!
Network Troubleshooting is a Multi-Domain Problem

Source Campus

Education Backbone

Destination Campus

JET Network

Regional
Where are common problems?

- Bad Link or Interfaces between Domains
- Latency Dependant problems inside domains with small RTT

Source Campus — Education Backbone — Destination Campus

JET Network — Regional
Soft Network Failures

- Soft failures are where basic connectivity functions, but high performance is not possible.
- TCP was intentionally designed to hide all transmission errors from the user:
 - “As long as the TCPs continue to function properly and the internet system does not become completely partitioned, no transmission errors will affect the users.” (From IEN 129, RFC 716)
- Some soft failures only affect high bandwidth long RTT flows.
- Hard failures are easy to detect & fix, soft failures can lie hidden for years.
Common Soft Failures

• Small Queue Tail Drop
 – Switches not able to handle the long packet trains prevalent in long RTT sessions and cross traffic at the same time

• Un-intentional Rate Limiting
 – Process Switching on Cisco 6500 devices due to faults, acl’s, or mis-configuration
 – Security Devices…

• Random Packet Loss
 – Bad fibers or connectors
 – Low light levels due to amps/interfaces failing
 – Duplex mismatch
Local testing will not find some problem.

Performance is good when RTT is < 20 ms

Performance is poor when RTT is > 20 ms

Switch with small buffers
Addressing the Problem: perfSONAR

- Developing an open web-services based framework for collecting, managing and sharing network measurements
- Deploying the framework across the science community
- Encouraging people to deploy ‘known good’ measurement points near domain boundaries
What is perfSONAR?

- A collaboration
 - For developing, deploying & utilizing network measurement tools
- An architecture and protocols
- A collection of software
perfSONAR Terminology

- perfSONAR Collaboration: Collection of groups working on perfSONAR tools
- perfSONAR Schemas: OGF standards for perfSONAR communications
- perfSONAR Bundle: collection of tools into a release
- perfSONAR MDM: A measurement service coordinated by DANTE
- perfSONAR PS: Perl-based tools
- perfSONAR Performance Toolkit: Bootable CD packaging of several tool
- perfSONAR Bandwidth Services: Active bandwidth probe control (bwctl)
- perfSONAR Latency Services: Active latency probe control (owamp/PingER)
- perfSONAR Measurement Archives: Store and publish results / data
- perfSONAR Analysis Tools: data visualization tools
- perfSONAR Troubleshooting Services: NDT and NPAD

- perfSONAR = all of the above
<table>
<thead>
<tr>
<th>perfSONAR Developers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESnet</td>
</tr>
<tr>
<td>GEANT</td>
</tr>
<tr>
<td>Internet2</td>
</tr>
<tr>
<td>RNP</td>
</tr>
<tr>
<td>University of Delaware</td>
</tr>
<tr>
<td>FERMI</td>
</tr>
<tr>
<td>Georgia Tech</td>
</tr>
<tr>
<td>SLAC</td>
</tr>
<tr>
<td>ARIES</td>
</tr>
<tr>
<td>BELNET</td>
</tr>
<tr>
<td>CARNet</td>
</tr>
<tr>
<td>CESNET</td>
</tr>
<tr>
<td>DANTE</td>
</tr>
<tr>
<td>DFN</td>
</tr>
<tr>
<td>FCCN</td>
</tr>
<tr>
<td>Consortium GARR</td>
</tr>
<tr>
<td>GRNET</td>
</tr>
<tr>
<td>IST</td>
</tr>
<tr>
<td>POZnan Supercomputing Center</td>
</tr>
<tr>
<td>Red IRIS</td>
</tr>
<tr>
<td>Renater</td>
</tr>
<tr>
<td>SURFnet</td>
</tr>
<tr>
<td>SWITCH</td>
</tr>
<tr>
<td>UNINETT</td>
</tr>
</tbody>
</table>
perfSONAR Deployments

- Internet2
- University of Michigan, Ann Arbor
- Indiana University
- Boston University
- University of Texas Arlington
- Oklahoma University, Norman
- Michigan Information Technology Center
- William & Mary
- University of Wisconsin Madison
- Southern Methodist University, Dallas
- University of Texas Austin
- Vanderbilt University
- ESnet
- Argonne National Lab
- Brookhaven National Lab
- Fermilab
- National Energy Research Scientific Computing Center
- Pacific Northwest National Lab
- APAN
- GLORIAD
- JGN2PLUS
- KISTI Korea
- Monash University, Melbourne
- NCHC, HsinChu, Taiwan
- Simon Fraser University
 - Surrey Campus
 - West Burnaby Campus
 - Vancouver
perfSONAR Deployments (2)

• GEANT
• GARR
• HUNGARNET
• PIONEER
• SWITCH
• CCIN2P3
• CERN
• CNAF
• DE-KIT
• NIKHEF/SARA
• PIC
• RAL
• TRIUMF
• ASCC

Note: These are just the deployments I know about. There are probably more…
perfSONAR JET deployment

- The Joint Engineering Team is developing a perfSONAR deployment plan
 1. Reviewing the network measurement data each network is willing to share, or would like to access
 2. Reviewing the perfSONAR tools & monitoring functions to evaluate which networks will deploy which ones.
- First deployments in the nets with open science missions and exchange points
perfSONAR Architecture

• Interoperable network measurement middleware (SOA):
 – Modular
 – Web services-based
 – Decentralized
 – Locally controlled

• Integrates:
 – Network measurement tools and data archives
 – Data manipulation
 – Information Services
 • Discovery
 • Topology
 • Authentication and authorization

• Based on:
 – Open Grid Forum Network (OGF) Network Measurement Working Group (NM-WG) schema
 – Currently attempting to formalize specification of perfSONAR protocols in a new OGF WG (NMC-WG)
 – Network topology description being defined in the Network Markup Language Working Group (NML-WG)
perfSONAR Protocols

- Web Services based protocols for:
 - Finding measurement services
 - Exchanging measurement data
 - Scheduling measurements
- We are standardizing these protocols in the OGF
Main perfSONAR Services

• Lookup Service
 – gLS – Global service used to find services
 – hLS – Home service for registering local perfSONAR metadata

• Measurement Archives
 – SNMP MA – Interface Data
 – pSB MA -- Scheduled bandwidth and latency data

• Measurement Points
 – BWCTL
 – OWAMP
 – PINGER

• Troubleshooting Tools
 – NDT
 – NPAD

• Topology Service
Selecting Network Measurements

• Router Interface Data
 – Utilization, Errors, Discards
 – Border & internal bottleneck links
 – Before & after the security infrastructure

• Active Bandwidth Measurements
 – Identify important paths to measure
 – Do you need to test 10G paths?

• Latency Measurements
 – Identify important paths to measure

• LAN/Desktop performance
 – NDT & NPAD
perfSONAR Software Terminology

• There are multiple perfSONAR services
 – I.e., lookup service, measurement archives, measurement points, authentication, etc

• There are multiple code trains
 – perfSONAR-PS
 – perfSONAR MDM

• perfSONAR service bundles
 – Integrated tested releases that may contain services picked from both code trains.
perfSONAR PS

- Primarily written in Perl
- Emphasis on
 - ease of deployment
 - community driven development & support
- Mostly US Developers
perfSONAR MDM

- Heavy reliance on Java
 - Some perl as well
- Emphasis on
 - measurement as a service offering
 - security & access restrictions
- Mostly European developers
perfSONAR Bundles

- **PS-Performance Toolkit**
 - Based on perfSONAR-PS code train
 - CDROM that automates creating a measurement appliance

- **perfSONAR-PS v3.1**
 - Packages of individual perfSONAR services

- **perfSONAR-MDM v3.1**
 - The basis of the LHCOPN perfSONAR MDM service
Selecting a Bundle or Distribution

- Do you need to support NDT & NPAD, or are you looking for a simple measurement appliance?
 - Consider PS-Performance Toolkit

- Does your organization have restrictions on OS’s and patching for servers supporting external network services?
 - Consider perfSONAR PS RPM packages

- Is publishing data to restricted groups critical, and are you a member of the eduGAIN federation?
 - Consider MDM release
PS-Performance Toolkit Components

- perfSONAR BOUY
 - Bwctl
 - nuttcp
 - iperf
 - owamp
- perfAdmin
 - Config Tools
 - Visualization Tools
- Apache http
- Pinger MA
- Pinger
 - ping
- SNMPMA
 - cacti
- NDT
- NPAD

Support Applications
- Provides a perfSONAR Web Service
- Low Level Measurement Tools

What is missing from the picture?
perfSONAR Hardware

- Requires dedicated hardware (not virtual servers)
- Copy somebody else, or try before you buy…
 - ESnet deployed hardware details at
 - https://performance.es.net/PMP.html
 - Sample host configuration for PS Performance Toolkit
 - http://fasterdata.es.net/ps_howto.html
 - Find somebody with the class of machine that your looking for and ask them how it works!
Typical Campus Deployment
Developing a Measurement Plan

• What are you going to measure?
 – Achievable bandwidth
 • 2-3 regional destinations
 • 4-8 important collaborators
 • 4-12 times per day to each destination
 • 20 second tests within the NA, longer to EU or Asia
 – Latency
 • OWAMP: ~10 collaborators over diverse paths
 • Pinger: Important collaborators who don’t support owamp
 – Interface Utilization & Errors

• What are you going to do with the results?
 – NAGIOS Alerts
 – Reports to user community
 – Website
Deploying a perfSONAR measurement host in under 30 minutes

• Using the PS Performance Toolkit is very simple
 – Boot from CD
 – Use command line tool to configure
 • what disk partition to use for persistent data
 • Network address and DNS
 • User and root passwords
 – Use Web GUI to configure
 • Select which services to run
 • Select remote measurement points for bandwidth and latency tests
 • Configure Cacti to collect SNMP data from key router interfaces
Measurement “Communities”

• The PS Performance Toolkit lets you specify which measurement community you measurement host is meant to service
 – Sample communities: LHC, DOE-SC-LAB, Internet2, ESnet, Climate, etc.

• This makes it easier to locate other measurement hosts of interest
Example: US Atlas

- Tier 1 to Tier 2 Center Data transfer problem
 - Couldn’t exceed 1 Gbps across a 10GE end to end path that included 5 administrative domains
 - Used perfSONAR tools to localize problem
 - Identified problem device
 - An unrelated domain had leaked a full routing table to the router for a short time causing FIB corruption. The routing problem was fixed, but the router started process switching some flows after that.
 - Fixed
 - Rebooting device fixed the symptoms of the problem
 - Better BGP filters configured to prevent reoccurrence (of 1 cause of this particular class of soft faults)
Example: NERSC & OLCF

- Users were having problems moving data between supercomputer centers
 - One user was: “waiting more than an entire workday for a 33 GB input file”
- perfSONAR Measurement tools were installed
 - Regularly scheduled measurements were started
- Numerous choke points were identified & corrected
- Dedicate wide area transfer nodes were setup
 - Tuned for Wide Area Transfers
 - Now moving 40 TB in less than 3 days
How to Participate

• Deploy perfSONAR

• Use perfSONAR to find & correct the hidden performance problems in your networks.
Firewalls

If your server is behind a firewall, you need to open the following ports:

• Open to Global perfSONAR Servers
 – Lookup Service -- open port tcp/8095

• Open to perfSONAR Users
 – SNMP MA -- open port tcp/8065
 – PingER -- open port tcp/8075
 – perfSONAR-BUOY -- open port tcp/8085
 – bwctld -- open port tcp/4823, edit /usr/local/etc/bwctld.conf, set peer_port to a value, open the tcp port for that value, and edit /usr/local/etc/bwctld.conf, set iperf_port, thrulay_port and nuttcp_port to a specific range, and open the tcp/udp ports for those ranges.
 – owamp -- open port tcp/861, edit /usr/local/etc/owampd.conf, set testports to range, open the udp ports for that range
 – NDT -- open port tcp/3001, open port tcp/3002, open port tcp/3003, open port tcp/7123
 – NPAD -- open port tcp/8100, open port tcp/8200

• Open for local management
 – Apache HTTP Server -- open port tcp/80, open port tcp/443
 – SSH -- open port tcp/22
Traceroute Visualizer

• Forward direction bandwidth utilization on application path from LBNL to INFN-Frascati (Italy)
 – traffic shown as bars on those network device interfaces that have an associated MP services (the first 4 graphs are normalized to 2000 Mb/s, the last to 500 Mb/s)

1 ir1000gw (131.243.2.1)
2 er1kgw
3 lbl2-ge-lbnl.es.net
4 slacmr1-sdn-lblmr1.es.net (GRAPH OMITTED)
5 snv2mr1-slacmr1.es.net (GRAPH OMITTED)
6 snv2sdn1-snv2mr1.es.net
7 chislsdn1-oc192-snv2sdn1.es.net (GRAPH OMITTED)
8 chiccr1-chislsdn1.es.net
9 aofacr1-chicsdn1.es.net (GRAPH OMITTED)

link capacity is also provided

10 esnet.rt1.nyc.us.geant2.net (NO DATA)
11 so-7-0-0.rt1.ams.nl.geant2.net (NO DATA)
12 so-6-2-0.rt1.fra.de.geant2.net (NO DATA)
13 so-6-2-0.rt1.gen.ch.geant2.net (NO DATA)
14 so-2-0-0.rt1.mil.it.geant2.net (NO DATA)
15 garr-gw.rt1.mil.it.geant2.net (NO DATA)
16 rt1-mi1-rt-mi2.mi2.garr.net

17 rt-mi2-rt-rm2.rm2.garr.net (GRAPH OMITTED)
18 rt-rm2-rc-fra.fra.garr.net (GRAPH OMITTED)
19 rc-fra-ru-lnf.fra.garr.net (GRAPH OMITTED)

20
21 www6.lnf.infn.it (193.206.84.223) 189.908 ms 189.596 ms 189.684 ms

Link capacity is also provided.