
Iperf Tutorial

Jon Dugan <jdugan@es.net>

Summer JointTechs 2010, Columbus, OH

Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science

Outline

What are we measuring?

TCP Measurements

UDP Measurements

Useful tricks

Iperf Development

Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science

What are we measuring?

Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science

Throughput? Bandwidth? What?
The term “throughput” is vague

• Capacity: link speed
- Narrow Link: link with the lowest capacity along a path
- Capacity of the end-to-end path = capacity of the narrow link

• Utilized bandwidth: current traffic load
• Available bandwidth: capacity – utilized bandwidth

- Tight Link: link with the least available bandwidth in a path

• Achievable bandwidth: includes protocol and host issues

45 Mbps 10 Mbps 100 Mbps 45 Mbps

Narrow
Link Tight Link

source sink

(Shaded portion shows background traffic)

Presenter
Presentation Notes
Throughput may be vague, but to some extent we’re stuck with it.
 Most of the tools that claim to measure throughput actually measure achievable bandwidth.
Fighting a long standing term is exhausting, but I think the distinctions here are helpful.
I’ll try to be specific about which I mean, but if I lapse into using throughput just ask me which one I mean.

Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science

Iperf data flow

Client is the sender
(data source)

Server is the receiver
(data sink)

Iperf discards
the data

ClientClient ServerServer

Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science

TCP Measurements

Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science

TCP Measurements
Measures TCP Achievable Bandwidth

• Measurement includes the end system
• Sometimes called “memory-to-memory” tests
• Set expectations for well coded application

Limits of what we can measure
• TCP hides details
• In hiding the details it can obscure what is causing errors

Many things can limit TCP throughput
• Loss
• Congestion
• Buffer Starvation
• Out of order delivery

Presenter
Presentation Notes

Blackbox you put data in at one end and it arrives at the other end.
By necessity TCP is a fairly complex state machine.

This is a good thing: simple model, TCP takes care of the details
This is a frustrating thing: when something goes wrong it can be hard to figure out why.

Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science

Example Iperf TCP Invocation

Server (receiver):
$ iperf -s
--
Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)
--
[4] local 10.0.1.5 port 5001 connected with 10.0.1.10 port 60830
[4] 0.0-10.0 sec 1.09 GBytes 933 Mbits/sec
[4] local 10.0.1.5 port 5001 connected with 10.0.1.10 port 60831
[4] 0.0-10.0 sec 1.08 GBytes 931 Mbits/sec

Client (sender):
$ iperf -c 10.0.1.5
--
Client connecting to 10.0.1.5, TCP port 5001
TCP window size: 129 KByte (default)
--
[3] local 10.0.1.10 port 60830 connected with 10.0.1.5 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.2 sec 1.09 GBytes 913 Mbits/sec

Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science

TCP performance: window size

Use TCP auto tuning if possible
• Linux 2.6, Mac OS X 10.5, FreeBSD 7.x, and Windows Vista

The –w option for Iperf can be used to request a particular buffer size.
• Use this if your OS doesn’t have TCP auto tuning
• This sets both send and receive buffer size.
• The OS may need to be tweaked to allow buffers of sufficient size.
• See http://fasterdata.es.net/tuning.html for more details

Parallel transfers may help as well, the –P option can be used for this

To get full TCP performance the TCP window needs to be large
enough to accommodate the Bandwidth Delay Product

Presenter
Presentation Notes
Mention OS stack tuning
Brief discussion of where parallel transfers may help

http://fasterdata.es.net/tuning.html

Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science

TCP performance:
Bandwidth Delay Product

The amount of “in flight” data allowed for a TCP connection

BDP = bandwidth * round trip time

Example: 1Gb/s cross country, ~100ms

1,000,000,000 b/s * .1 s = 100,000,000 bits

100,000,000 / 8 = 12,500,000 bytes

12,500,000 bytes / (1024*1024) ~ 12MB

Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science

TCP performance: read/write buffer size

TCP breaks the stream into pieces transparently

Longer writes often improve performance
• Let TCP “do it’s thing”
• Fewer system calls

How?
• -l <size> (lower case ell)
• Example –l 128K

UDP doesn’t break up writes, don’t exceed Path MTU

Presenter
Presentation Notes
Mention OS stack tuning
Brief discussion of where parallel transfers may help

Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science

TCP performance: parallel streams

Parallel streams can help in some situations

TCP attempts to be “fair” and conservative
• Sensitive to loss, but more streams hedge bet
• Circumventing fairness mechanism

- 1 Iperf stream vs. n background: Iperf gets 1/(n+1)
- x Iperf streams vs. n background: Iperf gets x/(n+x)
- Example: 2 background, 1 Iperf stream: 1/3 = 33%
- Example: 2 background, 8 Iperf streams: 8/10 = 80%

How?
• The –P option sets the number of streams to use
• There is a point of diminishing returns

Presenter
Presentation Notes
Mention OS stack tuning
Brief discussion of where parallel transfers may help

Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science

TCP performance:
congestion control algorithm selection

Classic TCP (aka TCP Reno) is very conservative

Linux supports several different algorithms
• http://en.wikipedia.org/wiki/TCP_congestion_avoidance_algorithm
• CUBIC seems to work well for RE&E traffic flows

How?
• -Z allows the selection of a congestion control algorithm

Presenter
Presentation Notes
Mention OS stack tuning
Brief discussion of where parallel transfers may help

http://en.wikipedia.org/wiki/TCP_congestion_avoidance_algorithm

Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science

UDP Measurements

Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science

UDP Measurements

UDP provides greater transparency

We can directly measure some things TCP hides
• Loss
• Jitter
• Out of order delivery

Use -b to specify target bandwidth
• Default is 1M
• Two sets of multipliers

- K. m, g multipliers are 1000, 10002,10003

- K, M, G multipliers are 1024, 10242,10243

• Eg, -b 1m is 1,000,000 bits per second

Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science

Example Iperf UDP Invocation

Server (receiver):

$ iperf -u -s
--
Server listening on UDP port 5001
Receiving 1470 byte datagrams
UDP buffer size: 107 KByte (default)
--
[3] local 10.0.1.5 port 5001 connected with 10.0.1.10 port 65299
[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec 0.008 ms 0/ 893 (0%)

Client (sender):

$ iperf -u -c 10.0.1.5 -b 1M
--
Client connecting to 10.0.1.5, UDP port 5001
Sending 1470 byte datagrams
UDP buffer size: 9.00 KByte (default)
--
[3] local 10.0.1.10 port 65300 connected with 10.0.1.5 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec
[3] Server Report:
[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec 0.003 ms 0/ 893 (0%)

[3] Sent 893 datagrams

Presenter
Presentation Notes
Jitter, loss and also will report out of order packets

Whereas TCP will try to maximize it’s performance fairly, UDP just sends blindly.
 Iperf could try to fire off UDP datagrams as quickly as possible but this wouldn’t lead to a meaningful measurement since many of the datagrams would never make it out on the wire. As a result the loss numbers would be greatly inflated. Instead Iperf allows you to specify a target bandwidth using the -b commandline option. If you don’t specify it it defaults to 1M.

Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science

Useful tricks

Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science

Using Iperf to generate high rate streams

UDP doesn’t require a receiver

If you have good counters on your switches & routers those can be
used to measure

Turns out UDP reception can be very resource intensive resulting in
drops at the NIC at high rates (8-9 Gb/s)

Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science

Routing loops for fun and profit

Iperf UDP 1 Gb/s stream
destined for 10.1.1.1

Use the –T option to Iperf to control the number of times the traffic loops
Can also use firewall filters to discard a certain TTL range.
Other filters may be prudent as well.
Use firewall filters to count traffic on your router.

(Do not try this at home, the author is a highly insane network engineer.)

10.0.1.1 10.0.1.2

Static route:
10.1.1.1/32 10.0.1.2

Static route:
10.1.1.1/32 10.0.1.1

1 Gb/s Host

Generate 10 Gb/s of traffic using a 1 Gb/s source host

Presenter
Presentation Notes
This is kind of evil in that it relies on a routing loop for traffic amplification. It is however quite effective.
If you have good counters this can be an excellent way to stress a high rate circuit and look for loss, etc.

Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science

Iperf Development

Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science

Iperf Development
(Iperf is dead, long live Iperf)
Iperf 2

• Iperf 2 is widely used
• Current version is 2.0.5 (released July 8, 2010)
• No further development, maintenance only

- critical patches
- sporadic releases, only when necessary

Iperf 3
• Currently in development
• Current version is 3.0b1 (released July 8, 2010)
• Weekly beta releases (starting this past Thursday)
• Eventually replace Iperf 2

Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science

Iperf 3: current status

Working
• TCP
• Control channel

- Stream setup
- Test parameter negotiation
- Results Exchange

• Clean code!

Coming Soon
• UDP tests
• API with sane error reporting, library
• Timeline at: http://code.google.com/p/iperf/wiki/Iperf3Roadmap

http://code.google.com/p/iperf/wiki/Iperf3Roadmap

Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science

More Information

Iperf 2:
http://sourceforge.net/projects/iperf/

Iperf 3:
http://code.google.com/p/iperf/

User Discussion:
iperf-users@lists.sourceforge.net

Developer Discussion:
iperf-dev@googlegroups.com

Network performance:
http://fasterdata.es.net/

Jon Dugan <jdugan@es.net>

http://sourceforge.net/projects/iperf/
http://code.google.com/p/iperf/
mailto:iperf-users@lists.sourceforge.net
mailto:iperf-dev@googlegroups.com
http://fasterdata.es.net/

	Iperf Tutorial
	Outline
	What are we measuring?
	Throughput? Bandwidth? What?
	Iperf data flow
	TCP Measurements
	TCP Measurements
	Example Iperf TCP Invocation
	TCP performance: window size
	TCP performance: �Bandwidth Delay Product
	TCP performance: read/write buffer size
	TCP performance: parallel streams
	TCP performance: �congestion control algorithm selection
	UDP Measurements
	UDP Measurements
	Example Iperf UDP Invocation
	Useful tricks
	Using Iperf to generate high rate streams
	Routing loops for fun and profit
	Iperf Development
	Iperf Development �(Iperf is dead, long live Iperf)
	Iperf 3: current status
	More Information

