SENSE
(SDN for End-to-End Networking @ Exascale)
Project
Inder Monga
Lead PI
What Problem(s) are We Solving

• End-to-end network service automation
 – Manual provisioning
 – No service consistency across domains
 – No service visibility across domains

• Application-Network interaction missing
 – Ability for science workflows to drive service provisioning
 – Programming APIs usually not intuitive and require detailed network knowledge, some not pre-known
 – Detailed network information needed, usually not easily available
What Problem(s) are We Solving

• Multi-domain service visibility and troubleshooting
 – Data APIs across domains for applications, users, network administrators
 – Performance, service statistics, topology, capability etc.
 – Exchange of ‘scoped’ and authorized information
• Alignment with security policies @ the end-site
Core idea

End-to-end, multi-domain provisioning automation and resource orchestration
SENSE scoped definitions

• End-to-End (network point of view)
 – DTN NIC to DTN NIC, across Science DMZ, WAN(s), Open exchange points (ideally)

• Multi-domain
 – Multiple administrative domains, independent policies and AUP

• Provisioning automation
 – Bring-up and management of services without interrupt-driven human involvement

• Resource orchestration
 – Allocation and reservation of resources including compute, storage and network
Current State of SDN - Gaps

• Inter-domain SDN undefined
 – Not focus of open-source or commercial efforts
 – No organized R&E efforts

• Resource descriptions vary wildly across projects, industry
 – Minimal ethernet topology discovery by controllers, represented in proprietary JSON formats

• Multi-domain admission control and Authz
 – No clear way to specify AA, policies, and enforce them across domains

• A ‘usable’ multi-domain testbed
SENSE Architecture and Approach

Orchestrator Level SDNos:
- Interacts with lower level SDNos via common API
- Manage Network Resources
- Create resource containers based on Policies and User profiles
- Service Instantiation and Orchestration

Resource Manager Role:

Resource Computation Engine
Computation based on following constraints:
- Topology
- Resources
- Scheduling
- Policy

SDNos: SDN Operating System
SDNos-rm: SDN Operating System - Resource Manager
Why do we need a Network OS?

• Multiple application support
 – Missing from existing SDN controllers
 – Requires security, AA, policy infrastructure

• Ability for users to develop custom services
 – Using infrastructure services
 – Offer them to their own customers

• Resource sharing (not control) key
 – Network is shared by many tenants
 – Different service levels (Best Effort, Guaranteed, Low-latency etc.)
SENSE Requirements for an SDN OS

• Communication and coordination
 – between the control planes at different sites.

• Security mechanisms
 – to protect the integrity and availability of network, compute, and storage resources

• Abstractions of resource state and metadata
 – Consistent across multi-domain

• Express and Enforce local policies
SENSE OS (SENOS) Architecture

- Service functions provide the intelligence to interpret or render a user’s intent, enforce policies, and coordinate workflows.
- Service functions are hierarchical in nature, with atomic services being a discrete set of services that can be composed to build a more complex, custom service.

- Separation of kernel (privileged) and multi-user (unprivileged) execution space
- Supports the concept of resources and allows the owners of resources to specify how those resources may be used, via access control lists.
- A set of generic object definitions for commonly-used objects in SDN programs, such as network nodes, ports, and links.
- An inter-process message-passing facility for communication between SENOS instances.
SENOS Intelligent Service Functions (1/2)

• Resource Information Service (RIS)
 – Harvest and normalizes resource topology
 – Enforces policy views of topology

• Resource Computation Service (RCS)
 – Multi-Constrain Multi Resource computation (from RAINS)
 – Add support for SENSE requirements
 • Next-Generation Science DMZ and site resources
 • Flow management, flow termination, and site services integration functions
 • Interaction with SENOS Policy Service
SENOS Intelligent Service Functions (2/2)

• Intent and Rendering
 – Intent APIs expose very high-level service abstractions that focuses on the ‘what’ the application wants to accomplish and not on the ‘how’
 – Renderer implements the business logic for the service
 • Authorization
 • Policy enforcement
 • Computation to determine a next set of tasks
 • Creation of subordinate (lower-layer) intents, if any
 • Directly performing a set of actions
 • Returning request status
 – Multi-Point VPN Service will be the first network service prototyped for the SENSE project
End-Site Orchestration

• Science DMZ Flow Management
 – Route to right flows to the right DTNs, vlan or more granular flow identification using OF
 – Support multi-science Science DMZ, with resource allocation and traffic steering
 – Enable addition of NFV services like Caching, and flow service chaining
End-Site Orchestration (contd.)

• DTN Autoconfig
 – Systems configuration to ensure data transfer application can connect @ Layer 3 and/or Layer 2
 • Includes, VLAN configuration on the NIC
 • Private or public IP address configuration of L2 or L3 VPNs
 • Other configuration like TCP window size, might be a stretch
 – Creating VMs or containers with right data-movement software for multi-science DTNs
 – OVS configuration and QoS configuration
 – Flow steering and ACLs to connect to the internal file system over different NICs
WAN / Regional / Exchange Network Orchestration

• Leverage past experience with dynamic point-to-point circuit services to develop multi-point offering

• Network Element (NE) Control
 – SENOS NE Driver for southbound communication (i.e. OpenFlow, NetConf/YANG, P4, CLI, etc)
SENSE End-to-End Orchestration

• Three Science Use-cases
 – LHC CMS use-case
 – NERSC Burst Buffer use-case
 – Superfacility use-case
LCLS Computing Use Case: Quasi Real Time Nanocrystallography Pipeline

Providing atomic-scale vision to researchers at the beamline in < 10s

Streaming data from the detector to scalable HPC
- Indexing, classification and reconstruction
- Quasi real-time response (<10s)
- Currently (LCLS-I) requiring 50 TFLOPS
- Cori Supercomputer: 500K cores, 28 PB disk

Pipeline critical for experiments studying atomic scale structural dynamics and fluctuations in matter:
- Complex materials (novel functional properties)
 - Heterogeneity and fluctuations at the nano-scale
 - Nano-particle dynamics
- Catalysis (efficient, selective, robust, earth-abundant)
 - Chemical, structural, and electronic changes; Nano-particles; Interfacial chemistry
- Biological function
 - Protein crystallography – structure and dynamics from reconstructions
 - Macro-molecules – conformational dynamics, heterogeneity, and interacting bio complexes
Superfacility Prototype and Use Case: Process of science transformed

Real-time analysis of ‘slot-die’ technique for printing organic photovoltaics, using ALS + NERSC (SPOT Suite for reduction, remeshing, analysis) + OLCF (HipGISAXS running on Titan w/ 8000 GPUs).

Instrumentation / Monitoring / Measurements

• For the user:
 – Service specific data to the user
 – Follows the thought behind the intent API, abstracted service metrics

• For the administrator:
 – More detailed information across all user-services
 – Multi-domain information exchange to help debug/troubleshoot/monitor service levels
 – Continuous monitoring

• Data Analysis
 – Data mined will be used for system modeling and machine learning to perform capacity predictions and develop strategies for negotiating resources
 – This task will collaboratively lead by the SDN NGenIA project
Dedicated to SDN R&D and testing, including SENSE
Flying Start: Leveraging prior work

• Modeling
 – RAINS project

• Testbed
 – Existing compute and DTN equipment @ sites
 – ESnet SDN testbed across US/Europe
 – GENI resources

• SDN Software
 – ENOS and ODL concepts and some components from ESnet/Harvey
Deliverables: Year 1 (Feb* – Feb)

• Science Use-Cases requirements
 – Influence the design and site implementation

• SENOS Architecture and Design, overall
 – With initial implementation of SDN software components

• Intent Interfaces
 – Initial implementation for Multi-point VPN and DTN Autoconfiguration
 – Design for service metrics feedback to application

• NG Science DMZ
 – Design and architecture
 – Initial implementation of SENOS for Local Science DMZ network

* Key SENSE members haven’t received funding yet
Deliverables: Year 2

• Implementation of SDN Science DMZ @ end-sites
• Enhance the SDN testbed with features needed for SENSE
• Final implementations of
 – Intent Rendering
 – SENOS
 – SENSE Orchestrator
• Integration into Science Workflows
Deliverables: Year 3

- Demonstration of Science Workflows/Use-cases over the testbed
- Improved Intent Interfaces
- Operational information sharing between sites
- Final implementation of SENOS components
- Tech Transfer and transition
Management Plan discussion

• Monthly PI meetings: Chin/Inder
 – Progress, issues

• Quarterly Progress reports in bullets

• Website for information sharing, both internal and external to project

• Software on Github
Roles and Responsibilities shared across the team

• Design/Architecture: Chin/Inder
 – Define/Write requirements for the software features, and WAN, LAN, Science implementation and science use-cases
 – Multi-domain orchestration: **Tom Lehman**
 • Resource models, design, AA, etc.
 – Policies and End-Site Orchestration: **Phil DeMar**
 – Site policies, ScienceDMZ automation, end-host automation requirements

• Software: John Macauley
 – Processes, release mechanism, documentation, web page etc.

• Deployment: Linda Winkler
 – Deployment of SDN testbed, architecture, timeline

• Science Use-cases & demos: Harvey/Azher
 – Coordination of science use-cases, demos etc.

• Outreach: TBD
 – News, Bullets, Website, Wiki, Logo

• Overall Project Management: Inder/Chin
 – Work with Thomas, deliverables tracking, reports etc.
Unified Topology Views Needed for Computation and Service Reasoning

- Multi-Resource, Full Stack
- End-to-End R&E path

RAINS – Resource Aware Intelligent Network Services

Multi-Resource Model Services:
- Model/Resource Information Queries
- Topology/Path Computation
- Workflow Rules Generation

Initial Set of Modeled Resources
- ANL DTNs
- ANL Shock Storage System
- ANL Science DMZ
- ESnet WAN
- WIX Exchange Point
- Internet2 WAN
- MAX Regional Network
- UMD ScienceDMZ
- UMD DTNs
- UMD Domain Science End Systems
- AWS VPC