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Abstract— The Software-defined network for End-to-end 
Networked Science at Exascale (SENSE) research project is 
building smart network services to accelerate scientific 
discovery in the era of ‘big data’ driven by Exascale, cloud 
computing, machine learning and AI. The project’s 
architecture, models, and demonstrated prototype define the 
mechanisms needed to dynamically build end-to-end virtual 
guaranteed networks across administrative domains, with no 
manual intervention. In addition, a highly intuitive ‘intent’ 
based interface, as defined by the project, allows applications to 
express their high-level service requirements, and an intelligent, 
scalable model-based software orchestrator converts that intent 
into appropriate network services, configured across multiple 
types of devices. The significance of these capabilities is the 
ability for science applications to manage the network as a first-
class schedulable resource akin to instruments, compute, and 
storage, to enable well defined and highly tuned complex 
workflows that require close coupling of resources spread across 
a vast geographic footprint such as those used in science 
domains like high-energy physics and basic energy sciences. 

Keywords—Intent based networking, multi-resource 
orchestration, intelligent network services, distributed 
infrastructure, resource modeling 

I. INTRODUCTION 
Network designs are evolving at a rapid pace toward 

programmatic control, driven in large part by the application 
of software to networking concepts and technologies, and 

evolution of the network as a key subsystem in global scale 
systems, such as those serving major science collaborations 
that incorporate large scale distributed computing and storage 
subsystems. This software-network innovation cycle is 
important as it includes a vision and promise for greatly 
improved automated control, configuration and operation of 
such systems, in comparison to the labor-intensive network 
deployments of today.  However, even the most optimistic 
projections of software adoption and deployment do not put 
networks on a path that would make them behave as a truly 
smart or intelligent system from the application or user 
perspective, nor one capable of interfacing effectively with 
facilities supporting highly automated data analysis 
workflows at sites located across the world.      

Today, domain science applications and workflow 
processes are forced to view the network as an opaque 
infrastructure into which they inject data and hope that it 
emerges at the destination with an acceptable Quality of 
Experience. There is little ability for applications to interact 
with network to exchange information, negotiate performance 
parameters, discover expected performance metrics, or 
receive status/troubleshooting information in real time.  As a 
result, domain science applications frequently suffer poor 
performance, especially so in highly distributed 
environments.   Indeed, the ability for a science application to 
interact and negotiate with network infrastructure within a 
science ecosystem, should be a hallmark of truly smart 
networks and smart applications.  It seems clear that current 
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static, non-interactive network infrastructures currently do not 
have a path forward to assist or accelerate domain science 
application innovations.   

We therefore envision a new smart network and smart 
application ecosystem that will solve these issues and enable 
future innovations across many Research and Education 
domain science communities.  The SDN for End-to-end 
Networked Science at the Exascale (SENSE) [1] project has 
developed an architecture and implementation to address this 
vision.  The high-level vision for this new application to 
network interaction paradigm includes the following: 

• Intent Based: Abstract questions, requests and 
responses in the context of the application objectives 

• Interactive: An ability to ask question and negotiate 

• Real-time: Resource availability, provisioning 
options, service status, troubleshooting on a real-time 
scale of seconds to minutes. 

• End-to-End: including multi-domain networks, end 
sites, and the network stack inside the end systems 

• Full Service Lifecycle Interactions: continuous 
conversation between application and network for the 
service duration of service   

We believe that these types of network services will be 
needed to support new workflows driven by Exascale 
resources.  It is expected that existing workflows involving 
multiple network data transfers will be replaced by the 
establishment of deterministic network paths to support 
realtime data streaming directly to compute memory or burst 
buffers.  This mode of operation will also support 
computational steering where instruments utilize data 
streaming and preliminary compute results to calibrate and 
guide experiments in realtime. 

In addition to this new paradigm for application network 
interaction, the SENSE system also solves a variety of 
practical problems which are commonplace in Research and 
Education (R&E) cyberinfrastructure systems as well as 
experienced in deployment of multi-domain virtual circuits 
[2], as noted below. 

Distributed scientific workflows need end-to-end automation 
so the focus can be on science, as opposed to infrastructure 
operations: 

• Manual provisioning and infrastructure debugging 
require excessive time and is human capital intensive 

• There is little to no service consistency across 
domains 

• Service visibility and multi-domain automated 
troubleshooting is almost non-existent 

• Lack of realtime information from domains impedes 
development of intelligent services 

Science application workflows have not integrated with 
network service provisioning paradigms because: 

• Network programming APIs are usually not intuitive 
and require detailed network knowledge, most not 
easily obtained 

• Efficient resource utilization awareness and 
management is very difficult   

Multi-domain orchestration and automation requires service 
visibility and troubleshooting: 

• Data APIs across domains are needed for 
applications, users, and network administrators 

• Mechanisms for authorized agents to obtain 
performance, service statistics, topology, capability, 
and other data is needed. 

• This will require systems for the exchange of 
‘policy-scoped’ and authorization information 

The remainder of this paper will describe the SENSE 
Services (Section II), Architecture (Section III), Testbed 
Deployment (Section IV), Use Case Experimentation Results 
(Section V), and Summary with Future Plans (Section VI). 

II. SENSE SERVICES 
The motivating focus for the SENSE project is the 

interaction between the application and the network.  
Therefore, network services are discussed here, prior to 
discussion of system architecture or implementation.  As will 
be described in subsequent sections, new methods and 
techniques for network resource management and control had 
to be developed in order to realize the application facing 
functions.  Starting the design process from a user services 
context provided the rationale for associated system designs.  
The term Application Workflow Agent (AWA) is often used 
to refer to the entity interacting with the SENSE system. It is 
expected that the particulars of where this AWA fits into the 
actual application architecture will vary by use case.  Often it 
will be a middleware component which is providing services 
to the actual user and managing a diverse set of 
cyberinfrastructure resources.  From a SENSE system 
perspective, the AWA is the entity requesting network 
services.  The remainder of this paper utilizes the term 
application and AWA interchangeably.   

The longer-term vision articulates a smart networked 
ecosystem where the network is an interactive component 
used by similarly featured smart applications, security 
systems, and other domain specific workflow agents.  This 
intelligent network service plane forms the boundary layer 
between the smart network and the smart application.  
Application workflow agents can engage and obtain services 
from the smart network system, through interactions with this 
boundary layer.  In this context, the following key features of 
intelligent network service plane are identified: 

• Intent: The ability for an application to submit a 
service request in the form of a high-level statement 
of desired results or outcomes, as opposed to a 
specific set of network centric inputs [3]. 
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• Interaction: The ability for an application workflow 
agent to engage in a bi-directional exchange aka 
"conversation" with the network as part of workflow 
planning.  This conversation can include discovery of 
available services, asking "what is possible" or "what 
do you recommend" types of questions, engaging in 
iterative negotiations prior to actual service requests, 
or full-service life-cycle status and troubleshooting 
queries. 

   The expectation is that the intelligent network sservice 
plane will enable multiple new operational paradigms, 
including a fundamentally new concept of “consistent 
network experience”.  This is where stable load balanced high 
throughput workflows cross optimally chosen network paths, 
and only up to a preset high water marks to accommodate 
other traffic.  This will be provided through automated 
interaction between the application workflow agents and the 
intelligent network service plane, responding to demands 
from the science programs’ principal data distribution and 
management systems.  The result will be a “consistent 
outcome” and "deterministic" (or more deterministic) end-to-
end system performance.   

The SENSE system has been developed to operate  in 
“Development Operations (DevOps)” mode, where custom 
services can be rapidly developed in response to individual 
application requirements. The general system philosophy is 
that while not “every” service imaginable can be 
implemented, almost “any” service can be.  That is, the system 
design is such that resource states and capabilities are 
sufficiently available to allow the construction of many 
different services.  The user requirements will be utilized to 
form the basis of the actual services. 

To add some more specificity to these ideas of smart 
network services, below is a description of some of the initial 
services which have been implemented by the SENSE project.   

• Time-Block-Maximum Bandwidth: Application asks 
for a specific time block and would like to know (or 
provision) the maximum bandwidth available for a 
specific time period. 

• Bandwidth-Sliding-Window: Application asks for a 
specific bandwidth and duration and provides an 
acceptable time window.  For example, a request may 
be for 40 Gbps for a 10-hour time window, sometime 
in the next 3 days.  

• Time-Bandwidth-Product (TBP):  Application asks 
for “8 hours of transfer at 10Gbps” representing a 
TBP of 36 TBytes. The user also specifies an 
acceptable time window, and other options such as 
“prefer the highest bandwidth rate available”, or the 
lowest.  

For each of these services, the user can interact with 
SENSE in the following modes: 

• Immediate Provision: If SENSE finds a resource path 
which satisfies the application request, provisioning 

starts immediately (after routine confirmations from 
both sides). 

• What is Possible?: In this mode, SENSE simply 
conducts a “Resource Computation” and provides the 
results back to the requestor.  No provisioning action 
is taken without further explicit requests from the 
user.   

• Negotiation: One or more rounds of Resource 
Computation requests with subsequent provisioning 
request by the application user if desired. 

In the context of SENSE services, the “network” includes 
the switching and routing elements AND the network stacks 
of the end systems, such as Data Transfer Nodes inside 
Science DMZ facilities.  The data plane capabilities associated 
with these services are: 

• Layer 2 point-to-point with QoS 

• Layer 2 multi-point with QoS 

• Layer 3 Flow QoS 

Additional details regarding these (and other) services, the 
supporting system architecture, use case integration, and 
testing results are provided in the subsequent sections.   

III. SENSE ARCHITECTURE 
The SENSE approach to end-to-end at-scale networking is 

based on software programmability and intelligent service 
orchestration. The SENSE orchestration architecture provides 
many intelligence, performance and assurance benefits 
through application oriented services. These are enabled by 
some novel technologies, including a) hierarchical service-
resource architecture, b) unified network and end-site resource 
modeling and computation, c) model based realtime control, 
d) application driven orchestration workflow, and e) end-to-
end network data collection and analytics integration.  

A. Hierarchical Servcie-Resource Architecture 
Within the SENSE orchestration architecture there are two 

distinct functional roles, Orchestrators and Resource 
Managers (RM). The interaction of Orchestrator(s) and RM(s) 
follows a hierarchical workflow structure whereby of the 
Orchestrator accepts requests from users or user applications, 
and determines the appropriate resource managers to contact 
and coordinate the end-to-end service request. The RMs are 
(administrative or technology) domain specific and are 
responsible for committing and managing local resources.  

As illustrated in Fig. 1, this hierarchical structure of 
Orchestrator and RM components separates application facing 
service control functions from infrastructure facing resource 
control functions. 

a) SENSE Orchestrator 

The SENSE Orchestrator (SENSE-O) is expected to be 
closely associated with a domain science 
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collaboration/application (e.g. LHC/CMS [4], ExaFEL 
[5],etc) and processes “high-level” context sensitive intents 
to determine what resources are needed and coordinate the 
requests of “lower-level” (or sub) intents to the 
corresponding RMs. As such, the Orchestrator performs the 
following functions: 

• Receives model-based resource descriptions from 
multiple RMs 

• Receives and responds to the user’s “high-level” 
intent requests (which is defined within the context 
of the user’s domain science 
collaboration/application). 

• Renders the user’s “high-level” descriptive intent 
request into “low-level” prescriptive requests for 
required resources 

• Performs multi-constraint resource computation 
(based on AuthN/AuthZ, resource availability, etc.) 
to determine the appropriate and necessary resources 
needed and corresponding RMs to contact. 

• Coordinate requests and replies from RMs and 
feedback the results to the user accordingly. 

• Support queries by the user for status and state. 
• Provide resource notifications to users as necessary. 

The SENSE-O can take on different functionality custom 
to the domain science needs and resources available to it (e.g. 
experiment, compute, storage, network, etc.). In the SENSE 
project, we are building a reference implementation that is 
specific to the big science models, controlling primarily data 
transfer and network resources.  

b) SENSE Resource Manager 

The SENSE Resource Manager (SENSE-RM) is tied to 
a domain with physical resources, e.g. a WAN (with network 
resources), a site (with Science DMZ resources), etc., and is 
responsible to facilitate the management of domain-specific 
resources. The SENSE-RM is responsible for the following 
functions: 

• Provides (appropriately scope and abstracted) 
model-based resource descriptions 

• Receives and responds to the “low-level” intent 
requests from the Orchestrator. 

• Performs multi-constraint resource computation 
(based AuthN/AuthZ, resource availability, etc.) to 
determine the local resources appropriate and 
necessary to service the request. 

 

Figure 1 SENSE Architecture 
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• Coordinates resource allocations/commitments, 
provisioning and de-provisioning with local 
controllers (e.g. NMS, etc.) as necessary. 

• Supports queries by the Orchestrator for status and 
state. 

• Provides resource notifications to the Orchestrator 
as necessary. 

The SENSE-RMs are specific to an administrative 
domain. However, within a single administrative domain, 
multiple instances of RMs may be deployed based on the 
distinct technology regions (e.g. DTNs, optical PKT/OTN, 
L2 OpenFlow, etc.). Conversely, a SENSE-RM may model 
multiple technology domains as a single resource description. 
For example, a network may have distinct switches and 
routers which provide layer 2 and layer 3 services 
correspondingly. However, the domain may instantiate a 
single RM which provides a unified resource description 
characterizing both sets of resources.  

c) Many-to-Many Relationship between SENSE-O and 
SENSE-RM 

We should not confuse SENSE-O with a central 
orchestration service for all applications. Instead, it is an 
architectural component that can have many instances 
independently serving different organizations, collaborations 
and application groups. In the SENSE orchestration model, it 
is expected that the many SENSE-O instances will 
communicate with multiple SENSE-RMs. The primary 
reason is that each scientific collaboration or workflow may 
have unique security, resource computation and specific 
resource allocations. For instance, one collaboration may use 
Shibboleth as its access and identity framework, whereas 
another may use Kerberos. Having distinct SENSE-O 
instances allows each collaboration to implement fine-grain 
AuthN and AuthZ functions in accordance with its security 
or resource allocation policies. Each SENSE-O instance in-
turn has a unique trust relationship with the SENSE-RMs that 
it communicates with. This facilitates scalability in that a 
SENSE-RM does not need to manage all end-user 
authentication, authorization, and access to resources within 
its domain, but can enforce coarse-grain policies against the 
identity of the requesting SENSE-O instance and the 
negotiated Service Level Agreement (SLA). 

In addition, different collaborations may have access to 
different resources within a SENSE-RM’s domain. For 
instance, one collaboration may be restricted to a certain set 
of network links, whereas another collaboration may not have 
the same constraint. By having distinct SENSE-O instances 
per collaboration, a SENSE-RM may publish different 
resource descriptions based on SLAs that it has with the 
SENSE-O instance. The SENSE-O instance in turn may 
perform resource computation and allocation with priorities 
and constraints that are unique to the collaboration. 

B. Orchestrator Northbound API and Services 
From user services perspective the SENSE orchestrator 

provides application services via a programmable northbound 
interface, namely SENSE-O NBI. While the Orchestrator 
Core can support modular intelligence computation and 
almost arbitrary orchestrated services, exposed through the 
SENSE-O NBI is a select intent based API with emphasis on 
end-to-end network connection discovery and computation, 
featured with intelligent bandwidth and schedule negotiation 
and workflow assistance.  

a) Examplary Connection Services for Quality of 
Experience 

SENSE-O NBI service intent is defined in JSON format. 
The below example with service_alias “sc18-p2p-b1” is to 
request a 10G connection with hard capped bandwidth QoS 
between two DTN sites at NERSC and  Caltech. An 
alternative service_type “Multi-Point VLAN Bridge” could be 
used to request for a VLAN connection of three and more 
terminals.   
{"service_type": "Multi-Path P2P VLAN", 
  "service_alias": "sc18-p2p-b1", 
  "connections": [ 
   { "name": "connection 1", 
     "terminals": [ 
      
{"uri":"urn:ogf:network:nersc.gov:2013:server+dtn11.nersc.gov", 
          "label": "any" 
        }, 
        {"uri":  
       "urn:ogf:network:caltech.edu:2013:server+xfer-
2.ultralight.org", 
          "label": "any" 
        } ], 
      "bandwidth": { 
         "qos_class": "guaranteedCapped", 
         "capacity": "10", 
         "unit": "gbps" 
      } } ] } 
 

Our supported QoS classes include guaranteedCapped (no 
burst over capped limit), softCapped (allowing for burst over 
the cap when extra bandwidth is available) and bestEffort. For 
users who are not sure how much bandwidth to ask but want 
to firstly query for the maximum available, the intent can 
include a query statement as in the example “sc18-p2p-b2”. 
{"service_type": "Multi-Path P2P VLAN", 
  "service_alias": "sc18-p2p-b2", 
  "connections": [ 
   { "name": "connection 1", 
    --- skipped content --- 
      "bandwidth": { 
         "qos_class": "guaranteedCapped"  
       } ], 
    "queries": [ 
    {"ask": "maximum-bandwidth", 
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      "options": [ 
        {  "name": "connection 1" 
        } ] } ] } 
 

Bandwidth QoS only represents one aspect of quality of 
experience for data transfer application users.  Many users 
also want deterministic or predictable time schedule for data 
transfer. In the example with service_alias “sc18-p2p-bs”, we 
introduce the schedule intent, which asks for the same 10G 
connection lasting for 4 hours that can be scheduled flexibly 
within next 2 days. This particular intent is called a 
“bandwidth-sliding-window”. SENSE-O NBI also support the 
intent of “bandwidth-fixed-window” and “maximum-
bandwidth-query-with-fixed-window” in its variation forms. 
{"service_type": "Multi-Path P2P VLAN", 
  "service_alias": "sc18-p2p-bs", 
  "connections": [ 
   { "name": "connection 1", 
    --- skipped content --- 
      "bandwidth": { 
         "qos_class": "guaranteedCapped", 
         "capacity": "10", 
         "unit": "gbps" 
      }, 
      "schedule": { 
         "start": "now", 
         "end": "+2d", 
         "duration": "+4h" 
       } } ] } 
 

Another interesting service intent is based on concept of 
Time-Bandwidth Product (TBP). For 8 hours of transfer at 
bandwidth of 10Gbps, the TBP represents 36000 Gbits or 36 
TBtyes of data volume. Allowing users to query and negotiate 
with bandwidth and schedule based on a given TBP will 
provide better quality of experience as TBP is a good estimate 
of total amount of data to transfer. In the example intent “sc18-
p2p-tbp1”, user tries to find a schedule to transfer an estimated 
10000 Mbytes (or 10 GB) data within a 2 day time window 
after October 1st 2018 8:00ET. The user wants to check for 
the fastest possible transfer speed using a “ use-highest-
bandwidth = true” option.  

{"service_type": "Multi-Path P2P VLAN", 
  "service_alias": "sc18-p2p-tbp1", 
  "connections": [ 
   { "name": "connection 1", 
    --- skipped content --- 
      "bandwidth": { 
         "qos_class": "guaranteedCapped", 
      } 
  } ], 
  "queries": [ 
    {"ask": "time-bandwidth-product", 
      "options": [ { 
            "name": "connection 1", 
            "tbp-mbytes": "10000", 
            "start-after": "2018-10-01T08:00:00.000-0400", 

            "end-before": "+2d", 
            "use-highest-bandwidth": "true"}  
   ] } ] } 
 

 Alternatively, user can ask for least bandwidth (or widest 
schedule) using a “use-lowest-bandwidth = true” option, or a 
bandwidth-bounded schedule using both “bandwidth-mbps >=”  
and “bandwidth-mbps <=” options.  The latter will return a 
feasible schedule that satisfies both the time-bandwidth-
product and the bandwidth upper and lower bounds.  

b) Service Negotiation Workflow via Intent Based API 

 SENSE-O NBI offers a set of other intent API calls for 
service and resource discovery. But central to the end-to-end 
connection service orchestration are calls for intent based 
service negotiation and instantiation workflow.  Herewith we 
only go through the service creation calls by their order in the 
workflow and skip those for service cancellation, 
modification and monitoring. 

1. Create Service Instance 
POST $service_intent_v1 to /sense/service  
This creates a service instance to persist session context. 

SENSE-O will compile and compute the initial service intent. 
When questions are asked in “queries” statement, it will 
provide the first answers to asked questions.  

Use the above service intent “sc18-p2p-b2” as example. 
The request for “connection 1” has      
  "bandwidth": { 
         "qos_class": "guaranteedCapped"  
       } 
and 
    "queries": [ 
    {"ask": "maximum-bandwidth", 
      "options": [ 
        {  "name": "connection 1" 
        } ] } ] 
 

In the reply upon successful computation, we shall see 
something like  

      "bandwidth": { 
         "qos_class": "guaranteedCapped", 
         "capacity": "10000", 
         "unit": "mbps" 
      } 

and  

    "queries": [ 
    {"asked": "maximum-bandwidth", 
      "options": [ 
        {  "name": "connection 1", 
          "bandwidth": "10000", 
         "unit": "mbps" 
        } ] } ] 
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Also included in the reply is the full text of computed 
service model in MRML language, which we will discuss in 
later sections.  

2. Service Negotiation Rounds 
POST $service_intent_v2-N to 
/sense/service/$svc_uuid 
When a user has more questions to negotiate with 

SENSE-O, it will revise the intent and post a newer version 
to the same service session identified by the service instance 
ID ($svc_uuid) found in the reply from the initial service 
creation call.  Following the above example, user knows the 
maximum bandwidth is 10Gbps for the requested end-to-end 
connection, however, this only applies to current time and 
gives the user rough idea of possible network capacity.  Then 
it could negotiate for a feasible schedule in a sliding window 
for a time-bandwidth product that is bounded by maximum 
and minimum allowed bandwidth as follows. 
  "queries": [ 
    {"ask": "time-bandwidth-product", 
      "options": [ { 
            "name": "connection 1", 
            "tbp-mbytes": "1000000", 
            "start-after": "now", 
            "end-before": "+2d", 
            " bandwidth-mbps <=": "10000", 
            " bandwidth-mbps >=": "2000"}  
   ] } ] } 

The reply could be  

  "queries": [ 
    {"ask": "time-bandwidth-product", 
      "options": [ { 
            "name": "connection 1", 
            "bandwidth": "5000", 
             "unit": "mbps", 
             "start ": "2018-9-01T10:00:00.000-0400", 
             "end ": "2018-9-01T10:26:40.000-0400" }  
   ] } ] } 

This means when asked for a TBP of 1 Terabytes to be 
transferred within next 2 days with acceptable bandwidth 
between 2 and 10Gpbs, SENSE-O provided a feasible 
solution for a transfer between 10:00:00 and 10:26:40 ET on 
September 1st 2018 at a speed of 5 Gbps.  Step 2 can be 
performed for many rounds until user is satisfied with the 
reply or gives up.  

3. Service Reservation 
PUT to /sense/service/$svc_uuid/reserve 

or 
POST $final_intent to 
/sense/service/$svc_uuid/reserve 
Once user is settled with the final intent, it could use PUT 

method to reserve the service, which refers to the reply of last 
round of negotiation as final intent. Or it could use a POST 

method to provide a last version of service intent with some 
final edits. The reserve call will propagate the service request 
through the SENSE-O core and to all involved SENSE-RMs. 
This is a transactional operation, meaning the SENSE-O and 
all involved SENSE-RMs must agree on the service and lock 
up the required resources. Otherwise, a complete rollback 
will be performed with none resource being held after. Such 
a transaction will be mostly data verification and database 
operation and can be done very quickly.  
4. Service Commit 

PUT to /sense/service/$svc_uuid/commit 
In the commit step, the resources held by reserve call will 

be actually allocated. Compared to a “soft” reserve that is 
mostly a database operation, the commit call is “hard” 
operation, which can take quite long time for some resources. 
SENSE-O NBI offers both synchronous and asynchronous 
methods to execute the commit call. 
5. Service Status Query 
 GET  /sense/service/$svc_uuid 

 This call can tell user the current status of a service 
instance in progress. This is particularly useful for checking 
status of an asynchronous commit call. 

The complete intent API document for SENSE-O NBI is 
published at [6]. 

C. Orchestrator To Resource Manager API 
From resource providers perspective the SENSE RM API 

provides a means to integrate separated and diverse resource 
domains into the SENSE orchestration. It helps form the 
many-to-many relationships between SENSE-Os and 
SENSE-RMs. 

The REST-based Orchestrator to RM API defined works 
on the fundamental principle of topology model manipulation. 
The Orchestrator queries the RM for a current view of 
topology available for use. The Orchestrator manipulates the 
provided topology to achieve its target goal, computes a delta 
between the original topology and the desired topology, and 
then proposes this resulting delta to the RM. The RM may 
accept or reject the proposed delta depending on a number of 
criteria including validity, local usage policies, resource 
availability, etc. If the RM accepts the delta the Orchestrator 
must then commit the change before the RM will apply the 
change to targeted resources.  

a) MRML Resource Modeling 

The SENSE-RM API is based on a resource model 
exchange and manipulation paradigm.  The SENSE-O queries 
multiple RMs for a resource model which describes the 
infrastructure and services available for use.  The resource 
model provided by each RM includes a description of its local 
resources and includes a definition for their interconnects to 
external resources. This external connection information 
allows the SENSE-O to build a model based connected graph 
which includes all of the RMs in its query space.   This end-
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to-end model based graph provides the basis for the SENSE-
O to respond to user requests and construct workflows for 
service provisioning interactions with the proper RMs. In the 
orchestrator, Modular Computation Elements (MCEs) 
provide the mechanisms to translate high level intent based 
user requests into specific workflow orchestration steps and 
resource requests to individual SENSE-RMs.   

The SENSE-O receives resource descriptions from 
SENSE-RMs and constructs a model based graph of the end-
to-end SDN topology.  The modeling framework is based on 
extensions to the Network Markup Language (NML) [7] 
standard developed by the Open Grid Forum (OGF) [8].   As 
part of a DOE ASCR research project, RAINS [9], extensions 
to NML were defined to allow other resource types in addition 
to network elements/topologies to be described and modeled.   
The base NML standard and these extensions define the 
Multi-Resource Markup Language (MRML) [10] which is 
utilized as the basis for resource modeling in the SENSE 
project.  In this context, other resource types may include 
systems that are connected to the network such as Data 
Transfer Nodes (DTNs) [11], storage systems, instruments, 
and compute nodes.  

b) Model Driven Realtime Resource Management 

The topology of resources by each RM is an MRML 
document. As the topology and resource states change along 
time, SENSE-RM needs to manage a serial version of the 
MRML document. This versioned model document defines 
all the semantics for the SENSE-O API. Therefore, the API 
operations will be extremely reduced into two: model pull 
and delta push. The latter is divided into two methods, 
propagate and commit, to support a transactional two-phase 
push process. The model driven approach and simplicity of 
API methods helps SENSE to achieve better scalability. In 
the project, we also emphasize on another important 
performance metric: real-time. We will discuss what it means 
for end-to-end resource integration and service orchestration.   

• Pull Model 
o The SENSE-O receives a model-based resource 

description from all of the RMs in the end-to-end 
SENSE ecosystem. The SENSE-O will integrate 
models from multiple SENSE-RMs to generate a 
multi-domain resource description model. 

o The individual SENSE-RMs will utilize local policy 
to determine what information is provided with 
regard to resources, abstraction degree, and any 
other factors based on use cases associated with an 
individual SENSE-O. 

o On the current SENSE Testbed, SENSE-O is 
customized to pull RM models every 30 seconds. 
The HTTP “If-Modified-Since” mechanism is used 
to reduce redundant data pull. SENSE-RMs will be 
responsible for tuning up abstraction degree and 
resource update frequency to satisfy the “real-time” 

requirement by SENSE-O, and also suppress 
excessive control traffic across the RM API. 

• Propagate Delta 
o The SENSE-O will process intent based service 

requests from the SENSE-O API and generate a 
“model delta” which will be used to communicate a 
potential action/provision request to the SENSE-
RM(s). The SENSE-RM is not expected to take any 
provisioning action based on the Propagate Delta 
method. 

o In response to the Propagate Delta method, the 
SENSE-RM should inspect, verify, and confirm the 
request of suggest revisions.  For example, a specific 
VLAN may be requested in the Propagate Delta 
method, however, the SENSE-RM would prefer 
another VLAN.  In this case the SENSE-RM should 
indicate the modified VLAN requests in the 
response via modifying the provided “model delta”.   

o As the propagate call is purely data transactions, it 
could be executed very fast. A negotiation 
procedure has been built into this phase such that 
multiple rounds of fast propagate and feedback 
transactions can be performed to achieve an updated 
real-time result that may be different than the 
original “delta”. This real-time negotiation and 
update is necessary as the SENSE-O and SENSE-
RM are in many-to-many loosely coupled 
relationship and may not always have completely 
“real-time” synchronization on resource states. 

• Commit Delta 
o The SENSE-O uses this method to ask the SENSE-

RM to commit the changes negotiated as part of the 
Propagate Delta exchange(s).   

o This is where the SENSE-RM is expected to 
actually provision resources. As this procedure is 
normally time-consuming, it is separated from the 
transactional propagate method. The SENSE-RM 
API commit is always asynchronous so that none 
SENSE-O call to the SENSE-RM would be blocked 
for long. Real-time status query is supported to 
check result of the asynchronous commit. 

D. Intelligent Orchestrator Core and Model Driven 
Computation 
The core of SENSE-O is StackV[12], a general-purpose 

open-source orchestrator for networked multi-services. 
StackV is implemented based on the full-stack model driven 
intelligent orchestration approach. From very top of the stack, 
applications communicate to the orchestrator with abstract 
service intent. Intents including those specifically for SENSE 
take different forms for convenience of users. The SENSE-O 
NBI translates service intent into so called “Service Model 
Description and Abstraction”, which is a formal MRML 
model that consists of abstract resources annotated with 
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service policy statements. The abstract model data are then 
fed to a dynamic compile procedure and compiled into a 
model-based computation workflow. A computation 
workflow consists of a variety of Model Computation 
Elements (MCE) as intelligence functions assembled into an 
execution tree. Each MCE uses system model data, service 
model data and policy data as input and accomplishes a 
specific function such as resource placement and connection 
computation. The output will be more detailed service model 
data, which could be used as input for another MCE. When 
the computation workflow finishes successfully, a System 
Model Delta will be created that provides detailed model 
statements about what need to change in the underlying 
infrastructures governed by RMs to satisfy the intent.  

The benefits of model-based computation include 
eliminating conversion between interface, internal and 
persistence data structures, leveraging standard tools for data 
query, navigation, transformation and reasoning, and 
maintaining consistent data semantics through all the 
computation modules. MCE is the basic computation 
module. The input and output of an MCE are both model data 
based on RDF/OWL, MRML and policy ontologies. In the 
compiled computation execution workflow, each MCE 
instance computes for a specific purpose. For an example 
SENSE service, a Layer-2 VLAN Connection MCE takes in 
the initial service abstraction model that specifies connection 
terminals, bandwidth and schedule parameters. It creates 
model statements for end-to-end layer-2 connection across 
end sites and wide area networks, in an updated service 
abstraction model and exports it together with some 
intermediate policy data. Then a Layer-3 Address 
Assignment MCE uses this new service abstraction model 
and policy data (more detailed than the original one) as input 
to perform its own computation and add layer-3 modeling 
statements to the further updated service abstraction model. 
StackV has implemented sophisticated logic to concatenate 
MCEs and merge computation results. The basic idea of this 
technique is to use SPARQL [13] queries to “shape” the 
output of a upper stream MCE into custom JSON format and 
use JSONPath [14] queries to extract information and “fit” to 
the input of downstream MCEs. Success in finishing the 
computation workflow means StackV has resolved all model 
abstractions and policy annotations in the final product and 
has turned an application intent into a System Model Delta. 
This “delta” can be pushed down to the SENSE-RM API for 
instantiation. 

E. Network Data Collection and Analytics Integration 
Topological model and resource states are the basis for 

the SENSE-O intelligent computation for orchestration 
services. Further integration of real time and historical 
network data through analytics engine provides improved 
quality of experience for users through better understanding 
of end-to-end network states and more precise prediction of 
traffic trends. The analytics-based feedback also helps users 

better describe their service intents to the Orchestrator. An 
extended SENSE architecture includes a Data Analytics 
Engine that collects network data from end sites and transport 
networks, and provides analytics pre-processing and 
feedback to the orchestrator core. It collects extensive 
telemetry data from various monitoring and active 
measurement sources that reflect network resource utilization 
and real-time states. This data collection and analytics 
capability is not yet in place and is anticipated as part of 
future work.  A description is included in order to fully 
explain the architectural vision.  

The Data Analytics Engine is a component external to the 
SENSE-O. In the current SENSE Testbed, ESnet and many 
DTN end sites have deployed some sort of monitoring and 
data collection and archiving mechanisms. The planned 
SENSE analytics solution will consolidate these existing 
resources into a functional utility engine that has distributed 
data collection, archiving and access endpoints but common 
API and data schema definitions.  

Following the suit of model driven API design, the 
interaction between the Data Analytics Engine and SENSE-
O will be formally modeled Service Specific Data exchanged 
through a well-defined API. With per-user and per-service 
ownerships being annotated upon the collected data, data 
contents and formats will be customized on demand based on 
service orchestration needs. In addition, the analytics data 
will be integrated with the existing MRML model through 
abstraction, reference and annotation processing. Finally, 
modified and new MCEs will be able to leverage the custom, 
pre-processed, MRML friendly data from the analytics 
engine to compute improved results for existing service 
intents and provide answers to many new intent questions that 
we could not easily answer today. 

The Service Specific Data bridge across the Analytics 
Engine and SENSE-O forms a closed control-feedback loop. 
The orchestration results will be monitored and measured and 
provided as feedback for fine tuning of future orchestration 
computation. On the other hand, the SENSE-O also provides 
information to the Analytics Engine to help verify and 
instrument the data collection and analysis more efficiently. 

IV. TESTBED DEPLOYMENT 
A SENSE testbed has been deployed which includes a 

mix development and production resources.   A shown in 
Figure 2, this testbed is deployed at DOE Laboratories and 
Universities facilities.  For the network resources the SENSE 
system interacts with production provisioning system ESnet 
and other networks. For the end-system resources, a mix of 
production and prototype DTNs are deployed.  For the 
production DTNs limited access is provided resulting in 
tailoring the set of SENSE based dynamic configurations to 
match local site polices.  This approach to use a mix of 
production and research resources enables experience with 
various real-world site deployments and considerations.   
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This testbed is being utilized to develop and test the SENSE 
software, as well as test with domain science use cases.   

V. EXPERIMENTATION AND USE CASES 
The SENSE project is now in a phase where use case 

integration is a key focus area.  The main use cases currently 
under test are as described below. 

Data Transfer Node Priority Flow:  Science DMZ located 
Data Transfer Nodes (DTNs) are a common method for 
moving data to/from compute facilities in the R&E 
community.   For this use case, SENSE services are utilized 
enable a “DTN Priority Flow Service”.  Since SENSE 
services are provisioned across the switching and routing 
elements AND the network stacks of the end systems, this 
allows the creation of QoS enabled path that can be utilized 
for specific flows such that deterministic performance can be 
achieved regardless of the background traffic.  The concept 
of operation is that these “SENSE enabled DTNs” can be 
place next to current production DTNs, or the SENSE 
software can be installed directly on the production DTNs.  In 
either case, standard DTN operations and flows across the 
best effort routed IP paths continue as normal. When a 
SENSE flow is established between DTNs, this flow will 
receive priority access to network and host level resources.  
The best effort flows will continue, but maybe at a reduced 
rate.  This SENSE capability is currently implemented as a 
Layer 2 point-to-point service. Work is underway to add 
Layer 2 multipoint and Layer 3 priority flow services.  The 
workflow agent for this use case utilizes the “Time-Block-
Maximum Bandwidth”, the “Bandwidth-Sliding-Window”, 
and the “Time-Bandwidth-Product (TBP)” SENSE services 
to instantiate Layer 2 paths with QoS.  This workflow also 
utilizes the “What is Possible?” and “Negotiation” features to 
demonstrate those feature sets.  The SENSE services and 

additional information regarding testing for this use case is 
available here [15]. 

Exascale for Free Electron Lasers (ExaFEL)[5]:  The 
objective of this use case is to stream nano crystallography 
diffraction data from SLAC to NERSC in order to perform 
analysis on CORI PII and provide feedback to the beamlines 
in the form a 3D electron structure visualization.  The 
workflow steps are as follows:  

• Stream the data from the LCLS online cache 
(NVRAM) to the SLAC data transfer nodes 

• Stream the data over an SDN path from the 
SLAC DTNs to the NERSC DTNs (the term 
DTN is used loosely here, could be a subset of 
the supercomputer nodes) 

• Write the data to the burst buffers layer 
(NVRAM) 

• Distribute the data from the burst buffers to the 
local memory on the HPC nodes 

• Orchestrate the reduction, merging, phasing and 
visualization parts of the SFX analysis 

The main components of the workflow are: 

• Database (file catalog) to keep track of the 
status/location of the data 

• state machine (set of Python scripts) to control 
and monitor the various steps 

• Provision SENSE path via API 

• Web interface to manage the components above 

For this use case the ExaFEL application workflow agent 
utilizes the “Time-Block-Maximum Bandwidth” SENSE 

Figure 2 SENSE Testbed 
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Service to provision the network path.  This includes 
establishment of Layer 2 paths with QoS with time domain 
scheduling.  Additional information regarding testing for this 
use case is available here [16]. 

Big Data Express:  BigData Express provides 
schedulable, predictable, and high-performance data transfer 
service for DOE’s large-scale science computing facilities 
(LCF, NERSC, and US-LHC computing facilities, among 
others) and their collaborators.  This project is focused on 
controlling resources at end-site locations.  For wide area 
service the Big Data Express system utilize SENSE services 
to provision paths across ESnet.  Big Data Express workflow 
agent utilizes the “Time-Block-Maximum Bandwidth” and 
the “Bandwidth-Sliding-Window” SENSE services to 
instantiate Layer 2 paths with QoS.  This application also 
utilizes the “What is Possible?” and “Negotiation” features 
sets to co-schedule across multiple end-sites and network 
resources.  Additional information regarding testing for this 
use case is available here [17]. 

The SENSE project is also working on use cases that 
integrate with Large Hadron Collider/ Compact Muon 
Solenoid (LHC/CMS) data movement and analysis 
workflows.  A current theme is the use of a new compact 
event form called the "nanoAOD" [18] that enables the rapid 
widespread distribution, ingest and real-time processing 
through a set of "PhysicsTools" of entire datasets of one to a 
few terabytes, that can be subsequently further analyzed on 
users' desktops and laptops.  The associated CMS analysis 
workflows, currently under development, are planned to be 
accelerated and scaled up in terms of the number of 
simultaneous workflows supported, through the use of 
SENSE's interactive bandwidth allocation and management 
services, together with the DTN-RM services at a number of 
CMS sites, and high throughput data transfer applications 
such as Caltech's open source Fast Data Transfer (FDT) [19].  

Further related developments, underway through the 
NSF-funded SDN Assisted NDN for Data Intensive 
Experiments (SANDIE) project [20], include the use of 
Named Data Networking (NDN) and its caching and routing 
methods, to be supported in future by SENSE services to 
expand NDN's ability to deal with larger scale data intensive 
workflows. 

VI. SUMMARY AND FUTURE PLANS 
The SENSE system architecture and implementation 

presented utilizes model-driven datafication of 
cyberinfrastructure to enable intelligent network services.  
Science applications utilizing Intent-based APIs with 
automated resources discovery and negotiation enable a 
significantly different mode of operation as compared to 
current network usage modes.  With dropping costs of 100GE 
capable devices, powerful end systems are increasingly being 
placed at edge locations where high-bandwidth connections 
directly to regional and national networks will be the norm.  

The Science DMZ based, National Research Platform 
Initiative [21] is an example of a high-performance end-
system edge deployment.  As a result, the expectation is that 
we are entering a cycle where network capacity will be easily 
overwhelmed by these advanced end-site and edge facilities.  
This indicates a need for methods to manage network 
resources and access in a more intelligent manner, which 
includes providing the application agents with sufficient 
information so that they can plan and optimize their 
operations.  The SENSE project vision and implementation 
is focused on these issues to be prepared for the day where 
unmanaged network utilization and extreme over 
provisioning is no longer the preferred operational approach. 

The SENSE architecture and service plan creates many 
avenues for investigation and provides a platform to address 
interesting research questions.  These issues revolve around 
the focus on interaction, negotiation, the degree of realtime 
state management and consideration at many levels of the 
decision and control operation process. Future plans include 
exploring some of these issues as noted below as part of 
ongoing development and testing of the SENSE system: 

• What are the tradeoffs between scaling and real-time 
state collection and performance? 

• How to make the realtime vs scalability features dynamic 
and configurable so adjustments can be based on 
conditions and application needs? 

• Which information/states should be routinely exchanged 
between Resource Manager(s) and Orchestrator?  Which 
information should be accessible on demand?  What are 
the best methods to make this dynamic/configurable to 
adjust based on different Resource Manager capabilities 
and policies? 

• What is the right level of abstraction for Application 
Agent to SENSE system interactions?   Is it necessary to 
provide variable levels from highly abstract to very 
detailed and resource specific? 

• What is the best method for realizing multi-domain, 
multi-resource authentication and authorization? What is 
the proper granularity for this?  User? Project? Domain? 
Individual network and end system resource elements? 
Flows? 

As the SENSE architecture and implementation evolves 
through multi-institution testbed deployment, the focus of the 
project is to continue integration with domain science use 
cases and transition the SENSE services to production status 
for both the network and application operations. 
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