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Abstract—Sensor and smart phone technologies present 

opportunities for data explosion, streaming and collecting from 
heterogeneous devices every second. Analyzing these large 
datasets can unlock multiple behaviors previously unknown, and 
help optimize approaches to city wide applications or societal use 
cases. However, collecting and handling of these massive datasets 
presents challenges in how to perform optimized online data 
analysis ‘on-the-fly’, as current approaches are often limited by 
capability, expense and resources. This presents a need for 
developing new methods for data management particularly using 
public clouds to minimize cost, network resources and on-
demand availability. 

This paper presents an implementation of the lambda 
architecture design pattern to construct a data-handling backend 
on Amazon EC2, providing high throughput, dense and intense 
data demand delivered as services, minimizing the cost of the 
network maintenance. This paper combines ideas from database 
management, cost models, query management and cloud 
computing to present a general architecture that could be applied 
in any given scenario where affordable online data processing of 
Big Datasets is needed. The results are presented with a case 
study of processing router sensor data on the current ESnet 
network data as a working example of the approach. The results 
showcase a reduction in cost and argue benefits for performing 
online analysis and anomaly detection for sensor data. 

Keywords—big data processing, lambda architecture, Amazon 
EC2, sensor data analysis 

I. INTRODUCTION 
The Cloud computing paradigm is a promising 

environment delivering IT-as-a-service for industries and 
researchers to deploy their applications [4, 8]. These 
capabilities have laid foundations for more innovative research 
challenges in Big Data and Internet of Things projects, with a 
continuing growth of massive and diverse data volumes, along 
with the use of data intensive applications. These areas present 
a need to investigate effective means for data management in 
efficient and cost-effective ways. Forecasting a growth of $75 
billion for small and medium-sized businesses using Clouds for 
data management applications, SAP industries argue lower 
costs, less installation needs, and ease of management of less 
IT resources as an attractive business model [14]. However, 
this technological innovation, comes with increased challenges 
such as network availability, security and reliability as biggest 
concerns for businesses world-wide . 

Initiatives such as Smart City projects are highly reliant on 
the availability of various services to fulfil their aims of data 

collection, management and processing. Access to certain 
architectures and resources to enable users to conduct Big Data 
and Internet of things research, has raised a number of issues of 
availability, know-how and security [20]. A constant growth in 
devices such as smartphones, sensors, household appliances, 
RFID devices, are joining internet capabilities to produce 
global data traffic of massive volumes and varieties, presenting 
various challenges for the security and management of these 
data-as-a-service applications [20].  

With this in mind, multiple vendors are delivering services 
for data processing such as Amazon Web Services (AWS), 
Rackspace hosting and Google Cloud, presenting a collection 
of tools for online data collection, cloud hosted databases and 
map reduce processing such as using Hadoop, Hive or Spark. 
By offering users virtual machines to host, compute and 
manage their data, users can use advantages such as elasticity, 
multi-tenancy and the pay-as-you-go cost model. For instance, 
cloud resources can be rented with current Amazon services 
priced for small data resources (i2.xlarge) for $0.853/hour and 
for large data resources (d2.8xlarge) for $5.520/hour for on-
demand resources. Additional reserved instances can be rented 
from 1 to 3 year terms, but may prove expensive in the long 
run, especially if data needs are not as intensive at all times.  

This paper presents a cost-optimised architecture for online 
and batch data processing for massive volumes of sensor data 
as an adaptation of the lambda architecture design pattern 
currently being used by companies such as Twitter and AWS 
[21]. The architecture combines both batch and stream 
processing capabilities for online processing and handling of 
massive data volumes in a uniform manner, reducing costs in 
the process. The paper presents a flexible data provisioning 
based on the user needs and achieves the following: 

• Data capability to be collected in online and processed 
on-the-fly for real time analysis. 

• Capability to perform massive batch processes on 
historical data sets to observe data patterns over longer 
period of time. 

• Investigate cost-effective solutions using cloud services 
for deploying this architecture. 

The paper has been organised as follows: section 2 presents 
related work and research pertaining to data processing 
architectures and the challenges still faced in them. This 
section also presents an overview of the lambda architecture 
and how it is currently being used with Apache Storm and 
Hadoop. Section 3 presents the proposed architecture and 



implementation challenges of porting similar data processing 
toolkits on AWS. These observations are supported by a case 
study presented in section 4 showing online data collection and 
processing for multiple router sensors sending data at a 
constant rate of 30 seconds. The results and conclusions are 
discussed in section 5 and 6 with further future extensions to 
the architecture to enable future smart city projects. 

II. RELATED WORK 

A. Current Data Processing Solutions 
Data analytics are essential to plan and create decision 

support systems for optimising the underlying infrastructure. 
This involves not only processing of the online data, in search 
for certain events, but also the historical data sources which 
may be needed to find data patterns which influence decisions. 
Cloud providers are paramount for the availability and 
durability to their resources but present various challenges. For 
instance, for availability, data is often replicated across 
multiple servers in different geographical locations, sometimes 
in untrustworthy locations [6]. There are also additional 
computational challenges in handling elasticity by allocating 
resources on-the-fly to handle increased demand.  

Mian et al. [22] presented a cost effective model for virtual 
machine provisioning to execute dynamic data analytic 
workloads, at the same time trying to satisfy all service level 
agreement (SLA) constraints. The paper highlighted how an 
optimised infrastructure would be more reliant on the provider 
setting up experiments and would not be defined SLAs. Dobre 
et al [23] presented a context aware framework, specifically 
designed for handling multiple devices, mapping between 
components and caching or handling requests from multiple 
users. As a means to support intelligent data processing 
through contexts, the authors however did not discuss how the 
data is moved through multiple abstraction layers to aid with 
speed and cost of delivery.  

Further projects such as M3 [24] proposed a disk 
communication layer between the mappers and reducers to 
allow dynamic rate-based load balancing and multi streaming 
of applications. Another version of the project Chameleon [25] 
used specific context based indexing to augment query for fast 
data delivery. Other concrete projects such as Yahoo’s Pig 
[17], Microsoft’s SCOPE [5] and Google’s initiatives [9], are 
aiming to integrate declarative query constructs from the 
database community into MapReduce-like software to allow 
greater data independence, code reusability, and automatic 
query optimization. These projects approached the problem as 
a distributed model, however further work needs to explore 
hybrid solutions which consider resources, data models, varied 
queries in accordance with network traffic or cost. 

Researchers have often merged techniques with other tools 
to develop field related solutions. Abouzied [26] discussed 

HadoopDB, a hybrid of MapReduce and DBMS technologies, 
to allow scalability and performance of massive data 
processing. The authors present the application for a biological 
protein analysis or for business warehousing. Another example 
of merging was for image analysis in medical fields [27]. 
Bruns [28] discussed how the current Twitter APIs were 
extended for third party researchers to deploy their own data 
analysis on twitter feeds in order to enhance business practices. 
However unique solutions that allow multiple users of varying 
backgrounds to write and deploy optimised data processing 
applications is still needed. However there is a need for tailored 
solutions for online and batch data processing which keeps in 
line non-functional attributes such as cost and network 
complexities. 

Further work has used similar data processing toolkits in 
smart grid applications where it is important to forecast and 
redistribute resources on the fly [31]. Current industry focus of 
using Spark SQL have aided further faster processing reducing 
some of the weaknesses of the Hadoop processing model [30]. 

B. Lambda architecture 
Presented as a software design pattern, the lambda 

architecture unifies online and batch processing within a single 
framework. The pattern is suited to applications where there 
are time delays in data collection and availability through 
dashboards, requiring data validity for online processing as it 
arrives. The pattern also allows for batch processing for older 
data sets to find behavioural patterns as per user needs [21]. 

 
Fig. 1. Basic lambda architecture for speed and batch processing. 

Figure 1 shows the basic architecture of how the lambda 
architecture works. It caters as three layers (1) Batch 
processing for precomputing large amounts of data sets (2) 
Speed or real time computing to minimize latency by doing 
real time calculations as the data arrives and (3) a layer to 
respond to queries, interfacing to query and provide the results 
of the calculations.  



 
Fig. 2. Main lambda architecture implemented on Amazon web services. 

 

Lambda architecture allows users to optimise their costs of 
data processing by understanding which parts of the data need 
online or batch processing. The architecture also partitions 
datasets to allow various kinds of calculation scripts to be 
executed on them [21]. However, a few critiques of the 
architecture have argued that the multiple set of projects that 
need to be maintained under the data branch to allow multiple 
data executions, requires more skills from the developers 
setting up the jobs to execute and produce results. 

Despite of this, the architecture is well suited for big data 
processing problems with multiple kinds of analysis needed to 
study the online data arriving through sensors. The online 
stream can be used to detect data anomalies verifying whether 
it is accurate before processing it further. Verified data can 
then be stored into databases, which can have batch scripts 
performed once a day or a month to study data patterns over a 
time period. Users can reduce the costs of performing these 
scripts on larger data sets by breaking the problem down in 
manageable steps reducing cost and tailoring the data analysis 
routines to suit their needs. This architecture can be adapted for 
collecting and analysing online sensor data to find efficient 
solutions to process large data sets. 

III. PROPOSED ARCHITECTURE 
In scenarios such as smart cities, involve working with 

large complex networks of sensors continuously fetching and 
recording data to a central repository for efficient decisions. 
Examples such as when to send garbage collection vans or 
when to grit the roads for better driving conditions can all be 
motivated through visual, motion and temperature sensor 
networks that already exist in city infrastructures. 

Public clouds provide a number of services which could be 
employed for online and batch processing. Table 1 presents a 
comparison of Microsoft azure and Amazon AWS services 
offering similar capabilities. For the purpose of this paper, 
Amazon EC2 is chosen as a starting point for accessing 

multiple services. A comparison of the services presented in 
Table 1 shows that the online processing needs stream and 
batch processing which was easier to be performed in Amazon 
cloud rather than Azure services. The availability of services 
and cost plans for first time users of the Amazon infrastructure 
were also suitable for the project objectives. 

TABLE I.  COMPARISON OF CLOUD SERVICES 

Example 
services Microsoft Azure Amazon web services 

Subhead 
Available 
Region Azure Region AWS Global 

Infrastructure 
Compute 
Services 

Virtual Machines 
(VMs) 

Elastic Compute Cloud 
(EC2) 

Storage Options Azure Storage (Blobs, 
Tables, Queues, Files) 

Amazon Simple Storage 
(S3) 

Database 
Options Azure SQL Database 

Amazon Relational 
Database Service (RDS) 

Amazon Redshift 
NoSQL 
Database 
Options 

Azure DocumentDB 
Azure Managed Cache 
(Redis Cache) 

Amazon Dynamo DB 
Amazon Elastic Cache 

Data 
Orchestration Azure Data Factory AWS Data Pipeline 

Administration 
& Security 

Azure Active 
Directory 

AWS Directory Service 
AWS Identity and 

Access Management 
(IAM) 

Analytics Azure Stream 
Analytics Amazon Kinesis 

Other Services & 
Integrations 

Azure Machine 
Learning 
None 
None 

None  
AWS Lambda  
AWS Config  

 

 

 

 



 
Fig. 3. ESnet router production network. 

 

Amazon AWS offers a collection of services which could 
be used for different purposes, each differing in cost and time. 
Selection of the appropriate cloud service that maps onto the 
general architecture of lambda architecture was not obvious 
and required comparisons and study of performance, and cost. 
One of the decisions is showcased in Table 2, which presents a 
comparison of using either S3 or DynamoDB as a means to 
handle and process data. Although DynamoDB is much more 
expensive compared to S3, the speed of query processing 
would reduce the total effective cost as we plan for long-term 
use of DynamoDB rather than using S3. 

TABLE II.  COMPARING S3 AND DYNAMODB 
SERVICES 

DynamoDB S3 
$0.02 per 100,000 
transactions 

$0.005 per 1000 
requests 

Storage costs 
vary. Maximum is 
$0.09 for storage 

Storage costs vary. 
$0.03 per GB 

Faster and DB Blob 

 

Similarly, a number of decisions had to be addressed in 
terms of cost and usefulness of the services. For the purposes 
of online processing of data, services such as Amazon Kinesis 
was chosen and merged with Amazon lambda for event-based 
processing of the data. Figure 2 describes the final processing 
architecture that was built on Amazon web services to read 
router data every 30 seconds and process it as it arrives and 
batch jobs. 

IV.  USE CASE: ESNET NETWORK SENSOR TESTBED 
We used the entire ESnet router production network as the 

testbed to experiment with this architecture (shown Figure 3). 
An existing SNMP data collection software, ESxSNMP was 
used to collect router in and out bytes from every interface 
every 30 seconds. 

Figure 2 describes the architecture that was built on 
Amazon web services to read router data every 30 seconds and 
process it in online and batch jobs. A recent report by Amazon 
[29] uses Apache spark and storm for processing the data 
stream. It also uses an event processing service which allowed 
processing scripts to be triggered when data arrives in the 
kinesis stream. In the architecture (figure 2) the event 
processing was omitted because in the use case, data was 
known to be arriving every 30 seconds making it less likely to 
have an event processing element. Having an event processing 
element also charges every time it is triggered, which would 
eventually charge more than the current architecture 
implemented. 

The initial implementation report [29] also uses Spark SQL 
to perform batch processing for a fast query analysis. In figure 
2, the basic elastic map reduce functions were implemented 
with Hadoop to perform map reduce processing jobs on hourly, 
daily and monthly bases in batches. The batch job could be 
triggered via cron jobs or through a job scheduler to run them 
once a day after the online data has been collected for the day. 
The map reduce jobs can filter and sort the data based on either 
hourly, 5 hourly or daily sorts. 

A. Real-time (online) or Speed processing 
The raw data arrives at 30second intervals from multiple 

router interfaces in the form of json files. These data sets were 
read and processed to calculate averages across minute 
intervals and the maximum values recorded. This has been 
explained below: 

Arriving Json raw data: [router_id, interface_id, 
variable_id, timestamp, data_recorded] 

5 minute aggregations: [router_id, interface_id, 
variable_id, 5_minute_avg, maximum_data_in_5_minutes] 

The 5 minute aggregations were output to a new stream 
which could then be used to visualise the data while the data 
arrives. 



B. Batch processing 
Figure 4 shows the batch processing jobs on the raw data 

sets. Multiple map reduce jobs can be triggered to read the raw 
data sets and produce consolidated 1 day, 7 day and 90 day and 
1 year aggregations. These batch files can only perform 
calculations on stored data sets. 

Outputs for the calculated data sets can be read into output 
directory to visualise the averaged data sets. These outputs are 
also stored in separate S3 buckets. 

 
Fig. 4. Batch processing on raw data sets. 

The EMR scripts used c1.medium machines as master, core 
and task with the machine image version 3.8.0 and a Hadoop 
distribution of Amazon 2.4.0. The map reduce command used 
was as follows: 

hadoop jar /home/hadoop/contrib/streaming/hadoop-
streaming.jar -files  s3://location-of-mapper/mapper.py, 
s3://location-of-reducer/reducer.py  -libjars 
/home/hadoop/CustomOutputFormats3.jar -outputformat 
oddjob.hadoop.MultipleTextOutputFormatByKey -mapper 
python mapper.py -reducer python reducer.py -input 
s3n://location-of-inputs/jsons/ -output s3n://location-of-output-
job 

The command, above, allows users to specify the location 
of mapper and reducer files, input files and where to produce 
outputs. Further java files can be passed as arguments to 
specify the format of the outputs generated as an optional step. 

V. RESULTS  
The experiments were set up to run for 3 months executing 

certain jobs at specific times during the months. Figures 5-11 
represent the statistics in terms of used hours, costs and type of 
services used during the time period. 

 
Fig. 5. Cost per service during two months (Month 1 and Month 2) of the 
experiment. 

Figure 5 shows the cost variation between two months. 
Cloud services charge for the amount of usage. As shown in 
Figure 5, Month 1 used more demand on EC2 services as 
compared to the Month 2. This is reflected in Figure 6 and 7, 
where Month 3 used even lesser resources bringing the costs 
down from 80 dollars to 20 dollars. 

Figure 7 shows that the cheapest services to use were micro 
machines and xlarge machines being the most expensive to 
use. 

 
Fig. 6. Instance hours used over 3 months. 

 
Fig. 7. Cost by instance type. 

Further analysis on the usage of online kinesis stream and 
batch processing can be done as seen in Figure 8-11. Figure 8 

MONTH	1	

MONTH	2	

MONTH	3	

t2.micro	 m3.xlarge	 c1.medium	 m1.small	 t1.micro	

MONTH	1	

MONTH	2	

MONTH	3	

t2.micro	 m3.xlarge	 c1.medium	 m1.small	 t1.micro	



and 9 show the distribution of requests used by the kinesis 
stream. Most of the kinesis cost arose from the stream hosting 
the data shown as shard active per hour. This shows that in the 
future cost could be optimised by limiting the amount of time 
the stream needs to be active by starting and deleting it, 
dynamically, when it is used.  

 
Fig. 8. Online stream: Kinesis usage during 1 month. 

 
Fig. 9. Online Stream: Distribution of work in terms of requests for kinesis. 

Figure 10 and 11 depict the usage of instances and the cost 
incurred by running batch jobs over the three month period 
using elastic map reduce. Using larges machine instances such 
as m3.xlarge machines produce more costs even if run a few 
times. These costs can be optimised by replacing larger 
machines with smaller machines such as c1.medium, to give 
similar results but at lower costs. Elastic map reduce involves 
creating a cluster of machines to act as master-slave to deploy 
and run the map reduce jobs. Therefore replacing these 
machines with smaller machines and more modes can help 
reduce the machine cost and also perform the same processing. 
The runtime of c1.medium cluster was approximately 10 
minutes, which was slower (of 5 minutes) than the m3.large 
machine clusters. 

 
Fig. 10. Batch processing: usage of various instance types in EMR over 3 
months 

Figure 11 shows the reduction in cost by replacing the 
machine specifications for the map reduce clusters. 
 

 
Fig. 11. Batch processing: price distribution of the EMR during 3 months 

VI. DISCUSSION AND CONCLUSIONS 
Lambda architecture allows multiple data processing scripts 

which are tailored to specific data sets. For online processing 
stream processing can be used to perform calculations as data 
arrives and batch processing scripts can be created to run on 
data stored from before. The above architecture was 
implemented on Amazon AWS utilising multiple resources and 
producing various results in terms of cost and usage. A number 
of lessons were learned while exploring the architecture on 
both batch and real time processing such as: 

For batch processing: 

• Performing local tests before deploying the scripts on 
EC2 helps to find code errors and manages in reducing 
the costs of failed clusters on EC2. 

• Even if the cluster was executed for 2 minutes, Amazon 
cloud charges the machine as a full hour, which causes 
the steep increase in EMR costs shown in Figure 10. 
Which machines are used in the cluster cause an impact 
on the cost and also affects the time the service will take 
to execute the jobs.  
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• Future work can involve using spot instances to be 
requested, to allow optimising the costs even further but 
may introduce more delays in the processing being 
fulfilled. 

For real-time or online processing: 

• The kinesis stream read data as a last-in-first-out that 
meant data needed to be saved locally to calculate the 5 
minute data aggregations. 

• Amazon Cloud management allows roles and rights to 
be assigned to multiple members of a team. Multiple 
members may have rights for kinesis processing, but if 
the kinesis stream interacts with other services by 
moving data across would require the member to have 
rights to the other services as well. Software testing 
strategies such as try and catch exceptions need to be 
implemented in the code to prevent services to fail. 

In terms of the processing time, the kinesis stream was able 
to process data in real-time while the EMR cluster used 
approximately 10 minutes to complete a job. Some of the 
services charge while they are active, and thus should only be 
dynamically started and stopped when being used in order to 
optimise costs. 

In conclusion, the lambda architecture on Amazon AWS 
was able to provide a proof-of-concept for data processing in 
both as data arrives and if it is saved prior to the scripts. The 
tailored solutions allow users to perform cost-optimised 
processing. Both processes can produce data aggregations 
which are easier to plot and reduces time for data processing 
through the data visualisation interface.  

Further work needs to be extended to explore issues of data 
security, availability zones and data replications for more 
complex operations of the services. Scripts which can perform 
data roll ups in case of data loss and machine-learning 
algorithms for performing online anomaly detection while the 
data arrives can be embedded into the stream, to check the data 
as it arrives. This would allow verification and validation of the 
data sets to be conducted as it arrives preventing loss in time 
and cost to run these scripts after the data has been saved and 
processed. However, the above experiment shows huge 
potential in processing of Big Data sets in cost-effective ways 
by implementing the lambda architecture design pattern and 
the architecture shows that it is particularly suited for cloud 
services where multiple resources are available for controlling 
and processing the data. This sort of architecture would prove 
extremely useful for processing sensor related data in Smart 
city research which is to be explored further in the future. 
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