
Lambda Architecture for Cost-effective
Batch and Speed Big Data processing

 Mariam Kiran Peter Murphy, Inder Monga, Jon Dugan Sartaj Singh Baveja
 School of Computer Science Energy Sciences Network (ESnet) Netaji Subhas Institute of Technology
 University of Bradford {pmurphy, imonga, jdugan}@es.net New Delhi
 m.kiran@bradford.ac.uk sartaj.singh@nsitonline.in

Abstract—Sensor and smart phone technologies present

opportunities for data explosion, streaming and collecting from
heterogeneous devices every second. Analyzing these large
datasets can unlock multiple behaviors previously unknown, and
help optimize approaches to city wide applications or societal use
cases. However, collecting and handling of these massive datasets
presents challenges in how to perform optimized online data
analysis ‘on-the-fly’, as current approaches are often limited by
capability, expense and resources. This presents a need for
developing new methods for data management particularly using
public clouds to minimize cost, network resources and on-
demand availability.

This paper presents an implementation of the lambda
architecture design pattern to construct a data-handling backend
on Amazon EC2, providing high throughput, dense and intense
data demand delivered as services, minimizing the cost of the
network maintenance. This paper combines ideas from database
management, cost models, query management and cloud
computing to present a general architecture that could be applied
in any given scenario where affordable online data processing of
Big Datasets is needed. The results are presented with a case
study of processing router sensor data on the current ESnet
network data as a working example of the approach. The results
showcase a reduction in cost and argue benefits for performing
online analysis and anomaly detection for sensor data.

Keywords—big data processing, lambda architecture, Amazon
EC2, sensor data analysis

I. INTRODUCTION
The Cloud computing paradigm is a promising

environment delivering IT-as-a-service for industries and
researchers to deploy their applications [4, 8]. These
capabilities have laid foundations for more innovative research
challenges in Big Data and Internet of Things projects, with a
continuing growth of massive and diverse data volumes, along
with the use of data intensive applications. These areas present
a need to investigate effective means for data management in
efficient and cost-effective ways. Forecasting a growth of $75
billion for small and medium-sized businesses using Clouds for
data management applications, SAP industries argue lower
costs, less installation needs, and ease of management of less
IT resources as an attractive business model [14]. However,
this technological innovation, comes with increased challenges
such as network availability, security and reliability as biggest
concerns for businesses world-wide .

Initiatives such as Smart City projects are highly reliant on
the availability of various services to fulfil their aims of data

collection, management and processing. Access to certain
architectures and resources to enable users to conduct Big Data
and Internet of things research, has raised a number of issues of
availability, know-how and security [20]. A constant growth in
devices such as smartphones, sensors, household appliances,
RFID devices, are joining internet capabilities to produce
global data traffic of massive volumes and varieties, presenting
various challenges for the security and management of these
data-as-a-service applications [20].

With this in mind, multiple vendors are delivering services
for data processing such as Amazon Web Services (AWS),
Rackspace hosting and Google Cloud, presenting a collection
of tools for online data collection, cloud hosted databases and
map reduce processing such as using Hadoop, Hive or Spark.
By offering users virtual machines to host, compute and
manage their data, users can use advantages such as elasticity,
multi-tenancy and the pay-as-you-go cost model. For instance,
cloud resources can be rented with current Amazon services
priced for small data resources (i2.xlarge) for $0.853/hour and
for large data resources (d2.8xlarge) for $5.520/hour for on-
demand resources. Additional reserved instances can be rented
from 1 to 3 year terms, but may prove expensive in the long
run, especially if data needs are not as intensive at all times.

This paper presents a cost-optimised architecture for online
and batch data processing for massive volumes of sensor data
as an adaptation of the lambda architecture design pattern
currently being used by companies such as Twitter and AWS
[21]. The architecture combines both batch and stream
processing capabilities for online processing and handling of
massive data volumes in a uniform manner, reducing costs in
the process. The paper presents a flexible data provisioning
based on the user needs and achieves the following:

• Data capability to be collected in online and processed
on-the-fly for real time analysis.

• Capability to perform massive batch processes on
historical data sets to observe data patterns over longer
period of time.

• Investigate cost-effective solutions using cloud services
for deploying this architecture.

The paper has been organised as follows: section 2 presents
related work and research pertaining to data processing
architectures and the challenges still faced in them. This
section also presents an overview of the lambda architecture
and how it is currently being used with Apache Storm and
Hadoop. Section 3 presents the proposed architecture and

implementation challenges of porting similar data processing
toolkits on AWS. These observations are supported by a case
study presented in section 4 showing online data collection and
processing for multiple router sensors sending data at a
constant rate of 30 seconds. The results and conclusions are
discussed in section 5 and 6 with further future extensions to
the architecture to enable future smart city projects.

II. RELATED WORK

A. Current Data Processing Solutions
Data analytics are essential to plan and create decision

support systems for optimising the underlying infrastructure.
This involves not only processing of the online data, in search
for certain events, but also the historical data sources which
may be needed to find data patterns which influence decisions.
Cloud providers are paramount for the availability and
durability to their resources but present various challenges. For
instance, for availability, data is often replicated across
multiple servers in different geographical locations, sometimes
in untrustworthy locations [6]. There are also additional
computational challenges in handling elasticity by allocating
resources on-the-fly to handle increased demand.

Mian et al. [22] presented a cost effective model for virtual
machine provisioning to execute dynamic data analytic
workloads, at the same time trying to satisfy all service level
agreement (SLA) constraints. The paper highlighted how an
optimised infrastructure would be more reliant on the provider
setting up experiments and would not be defined SLAs. Dobre
et al [23] presented a context aware framework, specifically
designed for handling multiple devices, mapping between
components and caching or handling requests from multiple
users. As a means to support intelligent data processing
through contexts, the authors however did not discuss how the
data is moved through multiple abstraction layers to aid with
speed and cost of delivery.

Further projects such as M3 [24] proposed a disk
communication layer between the mappers and reducers to
allow dynamic rate-based load balancing and multi streaming
of applications. Another version of the project Chameleon [25]
used specific context based indexing to augment query for fast
data delivery. Other concrete projects such as Yahoo’s Pig
[17], Microsoft’s SCOPE [5] and Google’s initiatives [9], are
aiming to integrate declarative query constructs from the
database community into MapReduce-like software to allow
greater data independence, code reusability, and automatic
query optimization. These projects approached the problem as
a distributed model, however further work needs to explore
hybrid solutions which consider resources, data models, varied
queries in accordance with network traffic or cost.

Researchers have often merged techniques with other tools
to develop field related solutions. Abouzied [26] discussed

HadoopDB, a hybrid of MapReduce and DBMS technologies,
to allow scalability and performance of massive data
processing. The authors present the application for a biological
protein analysis or for business warehousing. Another example
of merging was for image analysis in medical fields [27].
Bruns [28] discussed how the current Twitter APIs were
extended for third party researchers to deploy their own data
analysis on twitter feeds in order to enhance business practices.
However unique solutions that allow multiple users of varying
backgrounds to write and deploy optimised data processing
applications is still needed. However there is a need for tailored
solutions for online and batch data processing which keeps in
line non-functional attributes such as cost and network
complexities.

Further work has used similar data processing toolkits in
smart grid applications where it is important to forecast and
redistribute resources on the fly [31]. Current industry focus of
using Spark SQL have aided further faster processing reducing
some of the weaknesses of the Hadoop processing model [30].

B. Lambda architecture
Presented as a software design pattern, the lambda

architecture unifies online and batch processing within a single
framework. The pattern is suited to applications where there
are time delays in data collection and availability through
dashboards, requiring data validity for online processing as it
arrives. The pattern also allows for batch processing for older
data sets to find behavioural patterns as per user needs [21].

Fig. 1. Basic lambda architecture for speed and batch processing.

Figure 1 shows the basic architecture of how the lambda
architecture works. It caters as three layers (1) Batch
processing for precomputing large amounts of data sets (2)
Speed or real time computing to minimize latency by doing
real time calculations as the data arrives and (3) a layer to
respond to queries, interfacing to query and provide the results
of the calculations.

Fig. 2. Main lambda architecture implemented on Amazon web services.

Lambda architecture allows users to optimise their costs of
data processing by understanding which parts of the data need
online or batch processing. The architecture also partitions
datasets to allow various kinds of calculation scripts to be
executed on them [21]. However, a few critiques of the
architecture have argued that the multiple set of projects that
need to be maintained under the data branch to allow multiple
data executions, requires more skills from the developers
setting up the jobs to execute and produce results.

Despite of this, the architecture is well suited for big data
processing problems with multiple kinds of analysis needed to
study the online data arriving through sensors. The online
stream can be used to detect data anomalies verifying whether
it is accurate before processing it further. Verified data can
then be stored into databases, which can have batch scripts
performed once a day or a month to study data patterns over a
time period. Users can reduce the costs of performing these
scripts on larger data sets by breaking the problem down in
manageable steps reducing cost and tailoring the data analysis
routines to suit their needs. This architecture can be adapted for
collecting and analysing online sensor data to find efficient
solutions to process large data sets.

III. PROPOSED ARCHITECTURE
In scenarios such as smart cities, involve working with

large complex networks of sensors continuously fetching and
recording data to a central repository for efficient decisions.
Examples such as when to send garbage collection vans or
when to grit the roads for better driving conditions can all be
motivated through visual, motion and temperature sensor
networks that already exist in city infrastructures.

Public clouds provide a number of services which could be
employed for online and batch processing. Table 1 presents a
comparison of Microsoft azure and Amazon AWS services
offering similar capabilities. For the purpose of this paper,
Amazon EC2 is chosen as a starting point for accessing

multiple services. A comparison of the services presented in
Table 1 shows that the online processing needs stream and
batch processing which was easier to be performed in Amazon
cloud rather than Azure services. The availability of services
and cost plans for first time users of the Amazon infrastructure
were also suitable for the project objectives.

TABLE I. COMPARISON OF CLOUD SERVICES

Example
services Microsoft Azure Amazon web services

Subhead
Available
Region Azure Region AWS Global

Infrastructure
Compute
Services

Virtual Machines
(VMs)

Elastic Compute Cloud
(EC2)

Storage Options Azure Storage (Blobs,
Tables, Queues, Files)

Amazon Simple Storage
(S3)

Database
Options Azure SQL Database

Amazon Relational
Database Service (RDS)

Amazon Redshift
NoSQL
Database
Options

Azure DocumentDB
Azure Managed Cache
(Redis Cache)

Amazon Dynamo DB
Amazon Elastic Cache

Data
Orchestration Azure Data Factory AWS Data Pipeline

Administration
& Security

Azure Active
Directory

AWS Directory Service
AWS Identity and

Access Management
(IAM)

Analytics Azure Stream
Analytics Amazon Kinesis

Other Services &
Integrations

Azure Machine
Learning
None
None

None
AWS Lambda
AWS Config

Fig. 3. ESnet router production network.

Amazon AWS offers a collection of services which could
be used for different purposes, each differing in cost and time.
Selection of the appropriate cloud service that maps onto the
general architecture of lambda architecture was not obvious
and required comparisons and study of performance, and cost.
One of the decisions is showcased in Table 2, which presents a
comparison of using either S3 or DynamoDB as a means to
handle and process data. Although DynamoDB is much more
expensive compared to S3, the speed of query processing
would reduce the total effective cost as we plan for long-term
use of DynamoDB rather than using S3.

TABLE II. COMPARING S3 AND DYNAMODB
SERVICES

DynamoDB S3
$0.02 per 100,000
transactions

$0.005 per 1000
requests

Storage costs
vary. Maximum is
$0.09 for storage

Storage costs vary.
$0.03 per GB

Faster and DB Blob

Similarly, a number of decisions had to be addressed in
terms of cost and usefulness of the services. For the purposes
of online processing of data, services such as Amazon Kinesis
was chosen and merged with Amazon lambda for event-based
processing of the data. Figure 2 describes the final processing
architecture that was built on Amazon web services to read
router data every 30 seconds and process it as it arrives and
batch jobs.

IV. USE CASE: ESNET NETWORK SENSOR TESTBED
We used the entire ESnet router production network as the

testbed to experiment with this architecture (shown Figure 3).
An existing SNMP data collection software, ESxSNMP was
used to collect router in and out bytes from every interface
every 30 seconds.

Figure 2 describes the architecture that was built on
Amazon web services to read router data every 30 seconds and
process it in online and batch jobs. A recent report by Amazon
[29] uses Apache spark and storm for processing the data
stream. It also uses an event processing service which allowed
processing scripts to be triggered when data arrives in the
kinesis stream. In the architecture (figure 2) the event
processing was omitted because in the use case, data was
known to be arriving every 30 seconds making it less likely to
have an event processing element. Having an event processing
element also charges every time it is triggered, which would
eventually charge more than the current architecture
implemented.

The initial implementation report [29] also uses Spark SQL
to perform batch processing for a fast query analysis. In figure
2, the basic elastic map reduce functions were implemented
with Hadoop to perform map reduce processing jobs on hourly,
daily and monthly bases in batches. The batch job could be
triggered via cron jobs or through a job scheduler to run them
once a day after the online data has been collected for the day.
The map reduce jobs can filter and sort the data based on either
hourly, 5 hourly or daily sorts.

A. Real-time (online) or Speed processing
The raw data arrives at 30second intervals from multiple

router interfaces in the form of json files. These data sets were
read and processed to calculate averages across minute
intervals and the maximum values recorded. This has been
explained below:

Arriving Json raw data: [router_id, interface_id,
variable_id, timestamp, data_recorded]

5 minute aggregations: [router_id, interface_id,
variable_id, 5_minute_avg, maximum_data_in_5_minutes]

The 5 minute aggregations were output to a new stream
which could then be used to visualise the data while the data
arrives.

B. Batch processing
Figure 4 shows the batch processing jobs on the raw data

sets. Multiple map reduce jobs can be triggered to read the raw
data sets and produce consolidated 1 day, 7 day and 90 day and
1 year aggregations. These batch files can only perform
calculations on stored data sets.

Outputs for the calculated data sets can be read into output
directory to visualise the averaged data sets. These outputs are
also stored in separate S3 buckets.

Fig. 4. Batch processing on raw data sets.

The EMR scripts used c1.medium machines as master, core
and task with the machine image version 3.8.0 and a Hadoop
distribution of Amazon 2.4.0. The map reduce command used
was as follows:

hadoop jar /home/hadoop/contrib/streaming/hadoop-
streaming.jar -files s3://location-of-mapper/mapper.py,
s3://location-of-reducer/reducer.py -libjars
/home/hadoop/CustomOutputFormats3.jar -outputformat
oddjob.hadoop.MultipleTextOutputFormatByKey -mapper
python mapper.py -reducer python reducer.py -input
s3n://location-of-inputs/jsons/ -output s3n://location-of-output-
job

The command, above, allows users to specify the location
of mapper and reducer files, input files and where to produce
outputs. Further java files can be passed as arguments to
specify the format of the outputs generated as an optional step.

V. RESULTS
The experiments were set up to run for 3 months executing

certain jobs at specific times during the months. Figures 5-11
represent the statistics in terms of used hours, costs and type of
services used during the time period.

Fig. 5. Cost per service during two months (Month 1 and Month 2) of the
experiment.

Figure 5 shows the cost variation between two months.
Cloud services charge for the amount of usage. As shown in
Figure 5, Month 1 used more demand on EC2 services as
compared to the Month 2. This is reflected in Figure 6 and 7,
where Month 3 used even lesser resources bringing the costs
down from 80 dollars to 20 dollars.

Figure 7 shows that the cheapest services to use were micro
machines and xlarge machines being the most expensive to
use.

Fig. 6. Instance hours used over 3 months.

Fig. 7. Cost by instance type.

Further analysis on the usage of online kinesis stream and
batch processing can be done as seen in Figure 8-11. Figure 8

MONTH	1	

MONTH	2	

MONTH	3	

t2.micro	 m3.xlarge	 c1.medium	 m1.small	 t1.micro	

MONTH	1	

MONTH	2	

MONTH	3	

t2.micro	 m3.xlarge	 c1.medium	 m1.small	 t1.micro	

and 9 show the distribution of requests used by the kinesis
stream. Most of the kinesis cost arose from the stream hosting
the data shown as shard active per hour. This shows that in the
future cost could be optimised by limiting the amount of time
the stream needs to be active by starting and deleting it,
dynamically, when it is used.

Fig. 8. Online stream: Kinesis usage during 1 month.

Fig. 9. Online Stream: Distribution of work in terms of requests for kinesis.

Figure 10 and 11 depict the usage of instances and the cost
incurred by running batch jobs over the three month period
using elastic map reduce. Using larges machine instances such
as m3.xlarge machines produce more costs even if run a few
times. These costs can be optimised by replacing larger
machines with smaller machines such as c1.medium, to give
similar results but at lower costs. Elastic map reduce involves
creating a cluster of machines to act as master-slave to deploy
and run the map reduce jobs. Therefore replacing these
machines with smaller machines and more modes can help
reduce the machine cost and also perform the same processing.
The runtime of c1.medium cluster was approximately 10
minutes, which was slower (of 5 minutes) than the m3.large
machine clusters.

Fig. 10. Batch processing: usage of various instance types in EMR over 3
months

Figure 11 shows the reduction in cost by replacing the
machine specifications for the map reduce clusters.

Fig. 11. Batch processing: price distribution of the EMR during 3 months

VI. DISCUSSION AND CONCLUSIONS
Lambda architecture allows multiple data processing scripts

which are tailored to specific data sets. For online processing
stream processing can be used to perform calculations as data
arrives and batch processing scripts can be created to run on
data stored from before. The above architecture was
implemented on Amazon AWS utilising multiple resources and
producing various results in terms of cost and usage. A number
of lessons were learned while exploring the architecture on
both batch and real time processing such as:

For batch processing:

• Performing local tests before deploying the scripts on
EC2 helps to find code errors and manages in reducing
the costs of failed clusters on EC2.

• Even if the cluster was executed for 2 minutes, Amazon
cloud charges the machine as a full hour, which causes
the steep increase in EMR costs shown in Figure 10.
Which machines are used in the cluster cause an impact
on the cost and also affects the time the service will take
to execute the jobs.

0	

1000000	

2000000	

3000000	

4000000	

5000000	

nu
m
be

r	o
f	r
eq

ue
st
s	

Time	during	1	month	

0	 200	 400	 600	 800	

DataTransfer-Out-Bytes	

EUW1-Storage-ShardHour	

PutRequestBytes	

PutRequestPayloadUnits	

PutRequestVolume	

Storage-ShardHour	

0	 0.5	 1	 1.5	 2	 2.5	 3	 3.5	

BoxUsage	

BoxUsage:c1.medium	

BoxUsage:m3.xlarge	

USW2-BoxUsage:m3.xlarge	

0	
20	
40	
60	
80	
100	
120	
140	
160	

U
sa
ge
	in
	c
os
t	

Time	over	3	months	

• Future work can involve using spot instances to be
requested, to allow optimising the costs even further but
may introduce more delays in the processing being
fulfilled.

For real-time or online processing:

• The kinesis stream read data as a last-in-first-out that
meant data needed to be saved locally to calculate the 5
minute data aggregations.

• Amazon Cloud management allows roles and rights to
be assigned to multiple members of a team. Multiple
members may have rights for kinesis processing, but if
the kinesis stream interacts with other services by
moving data across would require the member to have
rights to the other services as well. Software testing
strategies such as try and catch exceptions need to be
implemented in the code to prevent services to fail.

In terms of the processing time, the kinesis stream was able
to process data in real-time while the EMR cluster used
approximately 10 minutes to complete a job. Some of the
services charge while they are active, and thus should only be
dynamically started and stopped when being used in order to
optimise costs.

In conclusion, the lambda architecture on Amazon AWS
was able to provide a proof-of-concept for data processing in
both as data arrives and if it is saved prior to the scripts. The
tailored solutions allow users to perform cost-optimised
processing. Both processes can produce data aggregations
which are easier to plot and reduces time for data processing
through the data visualisation interface.

Further work needs to be extended to explore issues of data
security, availability zones and data replications for more
complex operations of the services. Scripts which can perform
data roll ups in case of data loss and machine-learning
algorithms for performing online anomaly detection while the
data arrives can be embedded into the stream, to check the data
as it arrives. This would allow verification and validation of the
data sets to be conducted as it arrives preventing loss in time
and cost to run these scripts after the data has been saved and
processed. However, the above experiment shows huge
potential in processing of Big Data sets in cost-effective ways
by implementing the lambda architecture design pattern and
the architecture shows that it is particularly suited for cloud
services where multiple resources are available for controlling
and processing the data. This sort of architecture would prove
extremely useful for processing sensor related data in Smart
city research which is to be explored further in the future.

ACKNOWLEDGMENT
The work was supported by the NEMODE EPSRC grant

(www.nemode.ac.uk) for Big Data analysis on Cloud services
and further via ESnet resources and DOE support for Amazon
Cloud services. ESnet is operated by Lawrence Berkeley
National Laboratory, which is operated by the University of
California for the U.S. Department of Energy under contract
DE-AC02-05CH11231. This work was supported by the
Directors of the Office of Science, Office of Advanced
Scientific Computing Research, Facilities Division.

REFERENCES

[1] D. Abadi, Data Management in the Cloud: Limitations and
Opportunities, IEEE Engineering Bulletin - DEBU , vol. 32, no. 1, pp. 3-
12, 2009.

[2] R.M. Badia, M. Corrales, T. Dimitrakos, K. Djemame, E. Elmroth, A.
Ferrer, N. Forgó, J. Guitart, F. Hernández, B. Hudzia, A. Kipp, K.
Konstanteli, S. Nair, T. Sharif, C. Sheridan, J. Tordsson, T. Varvarigou,
S. Wesner, W. Ziegler, C. Zsigri., Demonstration of the OPTIMIS
Toolkit for Cloud Service Provisioning, Towards a Service-Based
Internet LNCS vol 6994, 2011.

[3] J. Brown, Migration, Integration, Challenges in Government Cloud
deployments, Govtech, 2015.

[4] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud
computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility FGCS 25, 2009.

[5] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver,
and J. Zhou. Scope: Easy and efficient parallel processing of massive
data sets. In Proc. of VLDB, 2008

[6] M. Dikaiakos, G. Pallis, D. Katsaros, P. Mehra, A. Vakali, Cloud
Computing: Distributed Internet Computing for IT and Scientific
Research, IEEE Internet Computing, 2009.

[7] e-skills UK, Jan 2013 https://www.e-skills.com/research/research-
themes/big-data-analytics/

[8] I. Foster, Y. Zhao, I. Raicu, S. Lu, Cloud Computing and Grid
Computing 360-Degree Compared Proceedings of the IEEE Grid
Computing Environments Workshop, pp. 1-10, 2008.

[9] J. N. Hoover. Start-Ups Bring Google’s Parallel Processing to Data
Warehousing. InformationWeek, August 29th, 2008.

[10] K. Jackson, K. Muriki, L. Ramakrishnan, K. Runge, R. Thomas,
Performance and cost analysis of the Supernova factory on the Amazon
AWS cloud, Scientific Programming 19, 2011.

[11] T. Jin, C. Tracy, M. Veeraraghavan, Characterization of high-rate large-
sized flows, University of Virginia, Master’s thesis, 2013, Online:
http://www.cs.virginia.edu/events/colloquia/jin.html

[12] Z. Liu, M. Veeraraghavan, C. Tracy, J. Tie, I. Foster, J. Dennis, J. Hick,
W. Yang, On using virtual circuits for GridFTP transfers, Int. Conf. for
HPC, Networking, Storage and Analysis, pp. 81:1, 2012.

[13] Y. Lu, M. Wang, B. Prabhakar, F. Bonomi, ElephantTrap: A low cost
device for identifying large flows, 15th Annual IEEE Symposium on
High-Performance Interconnects, pp. 99–108, 2007.

[14] D. Menon, Benefits and challenges in deployment of Cloud solutions for
SME, InsideSAP, 2014.

[15] C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Tomkins. Pig latin: a
not-so-foreign language for data processing, SIGMOD Conference, pgs
1099–1110, 2008.

[16] S. Sakr, A. Liu, D. M. Batista, M. Alomari, A Survey of Large Scale
Data Management Approaches in Cloud Environments. IEEE
Communication Surveys & Tutorials, vol 13, no 3, 2011.

[17] US DOE Office of Science ASCR, Terabit networks for extreme-scale
science workshop report. Available Online: http://science.energy.gov/,
2014.

[18] S. Sarvotham, R. Riedi, R. Baraniuk, Connection-level analysis and
modelling of network traffic, ACM SIGCOMM Internet Measurement
Workshop, pp. 99–104, 2001.

[19] P. Xiong, Y. Chi, S. Zhu, H.J. Moon, C. Pu, H. Hacigumus, Intelligent
Management of Virtualized Resources for Database Systems in Cloud
Environment, In ICDE, 2011.

[20] N. Mitton, S. Papavassiliou, A. Puliafito, K. S Trivedi, Combining
Cloud and sensors in a smart city environment, EURASIP Journal on
Wireless Communications and Networking, December 2012, 2012:247

[21] N. Marz, J. Warren, Big Data: Principles and best practices of scalable
realtime data systems. Manning Publications, 2013.

[22] R. Miana, P. Martina, J.L. Vazquez-Poletti, Provisioning data analytic
workloads in a cloud, Future Generation Computer Systems 29 (2013)
1452–1458

[23] C. Dobre, F. Xhafa, Intelligent services for Big Data science, Future
Generation Computer Systems 37 (2014) 267–281

[24] A.M. Aly, A. Sallam, B.M. Gnanasekaran, L. V. Nguyen-Dinh, W.G.
Aref, M. Ouzzani, A. Ghafoor, M3: stream processing on main-memory
MapReduce, in: Proceedings of the 2012 IEEE 28th International
Conference on Data Engineering, ICDE ’12, IEEE Computer Society,
Washington, DC, USA, 2012, pp. 1253–1256.

[25] T.M. Ghanem, A.K. Elmagarmid, P.-A. Larson, W.G. Aref, Supporting
views in data stream management systems, ACM Transactions on
Database Systems 35 (2008) 1:1–1:47

[26] A. Abouzied, K. Bajda-Pawlikowski, J. Huang, D. J. Abadi, and A.
Silberschatz. 2010. HadoopDB in action: building real world
applications. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. ACM, New York, USA

[27] Song X-W, Dong Z-Y, Long X-Y, Li S-F, Zuo X-N, Zhu C-Z, et al.
(2011) REST: A Toolkit for Resting-State Functional Magnetic
Resonance Imaging Data Processing. PLoS ONE 6(9): e25031.
doi:10.1371/journal.pone.0025031

[28] A. Brun, Y. Liang, L. Eugene. Tools and methods for capturing Twitter
data during natural disasters. First Monday, [S.l.], mar. 2012. ISSN
13960466.

[29] Amazon Web Services, Lambda Architecture for Batch and Stream
Processing on AWS, May 2015

[30] Xin, Reynold; Rosen, Josh; Zaharia, Matei; Franklin, Michael; Shenker,
Scott; Stoica, Ion, Shark: SQL and Rich Analytics at Scale, 2013

[31] Y. Simmhan, V. Agarwal, S. Aman, A. Kumbhare, S. Natarajan, N.
Rajguru, I. Robinson, S. Stevens, W. Yin, Q. Zhou and V. Prasanna,
Adaptive Energy Forecasting and Information Diffusion for Smart
Power Grids , IEEE International Scalable Computing Challenge
(SCALE 2012) , 2012

