A Monitoring Sensor Management System for Grid Environments

Brian Tierney, Brian Crowley, Dan Gunter, Mason Holding, Jason Lee, Mary Thompson

Computing Sciences Directorate
Lawrence Berkeley National Laboratory
University of California, Berkeley, CA, 94720

Abstract

Large distributed systems such as Computational Grids
require a large amount of monitoring data be collected for
a variety of tasks such as fault detection, performance
analysis, performance tuning, performance prediction, and
scheduling. Ensuring that all necessary monitoring is
turned on and that data is being collected can be a very
tedious and error-prone task. We have developed an
agent-based system to automate the execution of
monitoring sensors and the collection of event data.

1.0 Introduction

The ability to monitor and manage distributed
computing components is critical for enabling
high-performance distributed computing. Monitoring data
is needed to determine the source of performance problems
and to tune the system for better performance. Fault
detection and recovery mechanisms need monitoring data
to determine if a server is down, and whether to restart the
server or redirect service requests elsewhere. A
performance prediction service might use monitoring data
as inputs for a prediction model [24], which would in turn
be used by a schedul er to determine which resourcesto use.

As distributed systems such as Computational Grids [8]
become bigger, more complex, and more widely
distributed, it becomes important that this monitoring and
management be automated. Our approach to this problemis
to use a collection of software agents [5] as an event
management system which is designed for use in a Grid
environment.

For this discussion, an agent is an autonomous,
adaptable entity that is capable of monitoring and
managing distributed system components. Our system is
based on a collection of such agents, which can be updated
or reconfigured on the fly. Agents work with events; we use
the term event here to mean time-stamped data about the
state of any system component, such as current CPU usage,
or whether a server is no longer running.

Agents perform a number of tasks. They can securely
start monitoring programs on any host, and manage their
resulting data. They can provide a standard interface to host
monitoring sensors for CPU load, interrupt rate, TCP
retransmissions, TCP window size, and so on. Agents can
also independently perform various administrative tasks,
such as restarting servers or monitoring processes.

This agent-based monitoring architecture is sufficiently
general that it could be adapted for use in distributed
environments other than the Grid. For example, it could be
used in large compute farms or clusters that require
constant monitoring to ensure al nodes are running
correctly.

2.0 JAMM Monitoring System

The automated agent-based architecture that we have
developed is caled Java Agents for Monitoring and
Management (JAMM). The agents, whose implementation
is based on Java and Java Remote Method Invocation
(RM1), can be used to launch a wide range of system and
network monitoring tools, and then to extract, summarize,
and publish the results. The JAMM system is designed to
facilitate the execution of monitoring programs, such as
netstat, iostat, and vmstat, by triggering or adapting their
execution based on actual client usage. On-demand
monitoring reduces the total amount of data collected,
which in turn simplifies data management. For example, an
ftp client connecting to an ftp server could automatically
trigger netstat and vmstat monitoring on both the client and
server for the duration of the ftp connection. Application
activity is detected by a port monitor agent running on the
client and server hosts, which monitors traffic on a
configurable set of ports.

We use the JAMM system to generate monitoring data
for analysis by NetLogger [22], a toolkit for performance
analysis of distributed systems. When performing a
NetLogger analysis of a complex distributed system such
as a Computational Grid, activating all desired host and
network monitoring can be a very tedious task, and may

require an account on the server host. The JAMM system
greatly facilitates this task.

2.1 JAMM Architecture

The JAMM architecture uses a producer/consumer
model, similar to several existing Event Service systems,
such as the CORBA Event Service [3]. JAMM sensors
(producers) publish their existence in a directory service.
Clients (consumers) look up the sensors in the directory
service, and then subscribe (i.e., connect) to sensor datavia
an event gateway. The JAMM system consists of the
following components, shown in Figure 1, and described in
detail below:

® sensors

® Sensor managers
* event gateways
e directory service
* event consumers

* event archives

There are many existing systems with an event model
similar to the JAMM model. The CORBA “event service’
[3] has arich set of features, including the ability to push or
pull events, and the ahility for the consumer to pass a filter
to the event supplier. However we believe the JAMM
architecture is much more scalable, as described in section
2.3 below. JNI has a “Distributed Event Specification”
[12], which is a simple specification for how an object in
one Java virtual machine (JVM) registers interest in an
event occurring in an object in some other VM, and in how
it receives notification when that event occurs. There are
several systems with alternative event models, such as the
Common Component Architecture; many of which are
summarized in [16].

JAMM'’ s goals are also similar to some SNMP-based [2]
monitoring packages such as HP Openview or SGI’'s
Performance Co-Pilot [17]. However, SNMP is designed
for managing and monitoring network attached devices and

event event
consumer consumer

"subscribed”
Event Gateway

sensor directory

events (LDAP)

Event Gateway

sensor
publication info

I Host B

sensor manager sensor manager

Host A Host C

sensor manager

sensor | sensor | sensor sensor | sensor | sensor sensor | sensor | sensor

Figure 1: JAMM Components

hosts, not distributed systems. Integrating application
monitoring and arbitrary sensors into an SNMP-based
system would be quite difficult.

We believe that none of the previously described
systems are a perfect match for a Grid monitoring system.
Therefore we have tried to combine the relevant strengths
of each.

Other related systems include the Pablo system [4][15],
which has had the notion of application sensors for several
years. Wolski et al. [25] also describe an architecture with
similar characteristics to the service described here.

2.2 JAMM Components

Sensors

The JAMM system is designed to control the execution
of sensors. A sensor is any program which generates a
time-stamped performance monitoring event. For example,
we have sensors that monitor CPU usage, memory usage,
and network usage. Sensors are also used to monitor “error”
conditions, such as a server process crashing, or CRC errors
on arouter.

We have implemented the following types of sensors:

* host sensors: These sensors perform host monitor-
ing tasks, such as monitoring CPU load, available
memory, or TCP retransmissions. The monitoring can
be configured to run all the time, or be triggered by
detecting network activity on a specified port. Host
sensors may be layered on top of SNMP-based tools,
and therefore run remotely from the host being moni-
tored.

network sensors: These sensors perform SNMP
queries to a network device, typically arouter or
switch. Information on which device statistics are
being monitored is published in the directory service.
® process sensors. Process sensors generate events
when there is a change in process status (for example,
when it starts, dies normally, or dies abnormally).
They might also generate an event if some dynamic
threshold is reached (for example, if the average num-
ber of users over a certain time period exceeds a given
threshold).

application sensors: Autonomous sensors can also
be embedded inside of applications. These sensors
might generate events if a static threshold is reached
(for example, if the number of locks taken exceeds a
threshold), upon user connect/disconnect or change of
password, upon receipt of aUNIX signal, or upon any
other user-defined event. Application sensors can also
be used to collect detailed monitoring data about the
application to be used for performance analysis. These

types of sensors would not be directly under JAMM
control, but could still feed their results to the JAMM
system.

Sensor manager

The sensor manager agent is responsible for starting and
stopping the sensors, and keeping the sensor directory up to
date. Sensors to be run are specified by a configuration file,
which may be local or on a remote HTTP server. Sensors
can be configured to run always, when requested by a
sensor manager GUI, or when requested by the port
monitor agent. There is typically one sensor manager per
host.

An important component of the sensor manager is the
port monitor agent. This agent monitors traffic on specified
ports, and starts sensors only when network traffic on that
port is detected. Using the port monitor agent, oneis able to
customize which sensors are run based on which
applications are currently active, assuming that the
applications use well-known ports. For example, we can
turn on network monitoring when network intensive
applications are running, CPU monitoring when CPU
intensive applications run, and memory monitoring when
memory intensive applications run. This assumes that the
applications get triggered via a message from the network,
which is usually true for Grid applications.

event gateway

Event gateways are responsible for listening for requests
from event consumers. Event gateways can service
“streaming” or “query” requests from consumers. In
streaming mode the consumer opens an event channel and
the events are returned in a stream. In query mode the
consumer does not open an event channel, but only requests
the most recent event.

Event gateways can accept several types of requests
from consumers. The consumer may request all event data,
or only to be notified of certain types of events. For
example the netstat sensor may output value of the TCP
retransmission counter every second, but most consumers
only want to be notified when the counter changes, and not
every second.

A consumer can also request that an event be sent only if
it's value crosses a certain threshold. Examples of such a
threshold would be if CPU |oad becomes greater than 50%,
or if load changes by more than 20%. The event gateway
can aso be configured to compute summary data. For
example, it can compute 1, 10, and 60 minute averages of
CPU usage, and make this information available to
consumers.

The event gateways can also be used to provide access
control to the sensors, allowing different access to different
classes of users. Some sites may only allow internal access
to real-time sensor streams, with only summary data being

available off-site. These types of policy would be enforced
by the gateways. This mechanism is especially important
for monitoring clusters or computer farms, where there may
be alarge amount of internal monitoring, but only alimited
amount of monitoring data accessible to the Grid.

directory service

The directory service is used to publish the location of
all sensors and their associated gateway. This alows
consumers to discover which sensors are currently active,
and which gateway to contact to subscribe to a given
sensor’ s output. Query-optimized directory services such as
LDAP, Globus MDS [6], the Legion Information Base, and
the Novell NDS, all provide the necessary base
functionality for this. We are currently using LDAP,
because it is a simple, standard solution. LDAP servers can
be hierarchical, with referrals to other LDAP servers which
contain the directory service information for each site.
LDAP also supports the notion of replicated servers,
providing fault tolerance. Replication is critical to JAMM.
Otherwise, failure of the sensor directory server could take
down the entire system.

Current implementations of LDAP servers are optimized
for read access, and do not work well in an environment
with many updates.

However, it is possible to use only the naming and
communications portions of LDAP, without the underlying
database. For example, the Globus [7] system uses its own
optimized database underneath the LDAP communications
protocol to improve the performance of updates.

We are aso interested in exploring the “event
notification” service of LDAPv3 [23] as soon as it is
available. This service lets a client register interest in an
entry (i.e., sensor running) with the LDAP server, and
LDAP will notify the client when that entry becomes
available or is updated.

event consumers

An event consumer is any program that requests data
from a sensor. There are many possible types of consumers.
The current JAMM system includes the following:

* event collector: This consumer is used to collect
monitoring datain real time for use by real-time anal-
ysistools. It checks the directory service to see what
datais available, and then “subscribes’, viathe event
gateway, to all the sensorsit isinterested in. The sen-
sors then send the event data to the consumer asit is
generated. Datafrom many sensors, as well as streams
of datafrom application sensors, isthen merged into a
file for use by programs such as nlv, the NetL ogger
real-time event visualization tool [22].

* archiver agent: This consumer is used to collect
datafor an archive service. It subscribesto the logging
agents, collects the event data, and placesit in the
archive. It also creates an archive directory service
entry indicating the contents of the archive.

® process monitor: This consumer can be used to
trigger an action based on an event from a server pro-
cess. For example, it might run a script to restart the
processes, send email to a system administrator, call a
pager, etc.

overview monitor: This consumer collects informa-
tion from sensors on several hosts, and uses the com-
bined information to make some decision that could
not be made on the basis of data from only one host.
For example, one may want to trigger a page to a sys-
tem administrator at 2 A.M. only if both the primary
and backup servers are down.

event archives

It is important to archive event data in order to provide
the ability to do historical analysis of system performance,
and determine when/where changes occurred. While it may
not be desirable to archive all monitoring data, it is
necessary to archive a good sampling of both “normal” and
“abnormal” system operation, so that when problems arise
it is possible to compare the current system to a previously
working system. Archives might also be used by
performance prediction systems, such as the Network
Weather Service (NWS) [24].

The JAMM architecture provides a flexible method for
selecting what gets archived, because the archive is just
another consumer. In some environments very little will be
monitored, and in others, it may be desirable to archive
everything. With this approach the archive need not get in
the way of any real-time monitoring.

2.3 Scalability Issues

One of the biggest issues in defining a monitoring
architecture for use in a Grid environment is scalability. It
is critical that the act of monitoring does not affect the
systems being monitored. In the JAMM model, one can add
additional event gateways, and additional sensor directories
as needed, reducing the load where necessary. In the case
where many consumers are requesting the same event data,
the use of an event gateway reduces the amount of work on
and the amount of network traffic from the host being
monitored. An event gateway would typically be run on a
separate host from the grid resources, to ensure that the load
from the gateway did not affect what was being monitored.

In particular, we believe that JAMM is more scalable
than the CORBA Event Service. In the JAMM architecture,
event data is not sent anywhere unless it is requested by a
consumer. Many of the current event service systems,

including CORBA, send all event data to a centra
component, which consumers then contact. In the JAMM
model, only sensor publication (location) data is sent to a
central directory server. Event data goes directly from
producer to consumer. We believe this model will scale
much better in a Grid environment.

3.0 JAMM Implementation

The JAMM sensor managers, event gateways, and some
of the consumers are implemented as Java Activatable
Remote Method Invocation (RMI) objects. RMI provides a
number of features, including the ability to add, remove, or
reconfigure sensors on the fly. RMI also facilitates code
development by making the network communication
transparent to the programmer.

Activatable RMI objects can be loaded and run simply
by invoking one of their methods, and will unload
themselves automatically after a period of inactivity. RMI
objects can be dynamically downloaded from an HTTP
server every time the RMI daemon is restarted, making
software updates trivial, and easing code deployment. The
use of Java also facilitates porting the agents to a large
number of platformsin a heterogeneous Grid environment.

JAMM event data can be in either XML format or ULM
(Universal Logger Message) [1], a simple ASCII-based
format which is used by NetLogger. We are looking into
adding a binary format option for high throughput event
data that can not tolerate the parsing overhead of ASCII
formats. We hope that the use of standard formats like
XML will make it possible for JAMM to interoperate with
other monitoring sensors on the Grid.

We are also considering supplementing RMI with Sun's
Java Management Extension (JMX) [13]. IMX has a good
communication model and a rich set of SNMP tools, and
requires less memory than our current RMI-based
implementation. However, the only good implementation
of IMX currently isacommercial product from Sun, DMK
[11], which may not be affordable in an academic
environment.

4.0 JAMM Usage

We often use JAMM to collect monitoring events for use
with the NetLogger Toolkit [22]. NetLogger (short for
Networked Application Logger) is designed to monitor,
under actual operating conditions, the behavior of all the
elements of the application-to-application communication
path in order to determine exactly where time is spent
within a complex system. Distributed application
components are instrumented to perform precision
time-stamping and event logging at every critical point
(e.g., dl 1/O and any significant computational routines).
The events are correlated with host and network monitoring
to characterize the performance of all aspects of the system

indetail. NetLogger includes alibrary that makesit easy for
distributed applications to log interesting events at every
critica point. NetLogger is designed to facilitate
identification of bottlenecks and help with performance
tuning.

An example use of JAMM is shown in Figure 2.
Monitoring data is collected at both the client and server
host, and at al network routers between them. All event
data is sent to a real-time monitor consumer for real-time
visualization and NetLogger analysis. Server and router
datais also sent to the archive.

—
ver
-

1

Ser’
-
>
.

network
Sensor

[
{
g 1
<]
’
]

"subscribed"
events -

real-time
monitor
consumer
sensor directory

real-time Event Log Archive
monitoring

Figure 2: Sample JAMM Usage

Adding new sensors to JAMM is quite simple. If the
sensor is an RMI object, one just copies the Java object to
an HTTP accessible directory and edits the central
configuration file. Every few minutes the sensor managers
check for updates to the configuration file, and activate new
sensors if necessary, publishing them in the sensor
directory. If the sensor is not Java-based, it will have to be
copied to each host by some other means. Converting
existing monitoring tools to JAMM sensors is quite easy
using the JAMM Perl sensor modules and the JAMM Java
sensor class.

5.0 Reaults

As an example of how JAMM may be used to monitor a
Grid application, we describe it's use in the DARPA
MATISSE project [14], an NGI project whose goal is to
enable MEMS (micro-electro-mechanical systems)
researchers to efficiently access, manipulate, and view high
resolution high frame rate video data of MEMS devices
remotely over the DARPA Supernet [18], an OC 48 (2.4
Ghits/second) NGI testbed network.

A demonstration of the Matisse application was
performed in May 2000 in Arlington, VA, the configuration
of which is shown in Figure 3. Data was stored on a
Distributed Parallel Storage System (DPSS) [21] at LBNL
in Berkeley, CA. Data was transferred on-demand across
Supernet to a Linux compute cluster, which did the data
analysis, and then sent the results to a workstation.

Q Compute Cluster

Storage Cluster Visualization (8 nodes)
(OPSS) Workstation

1000BTs 11000 BT
——@——@
NTON DARPA Supernet
i1

Berkeley Lab N
Storage Cluster ISI East (Arlington, VA)
Compute Cluster

Figure 3: Matisse Application Environment

JAMM was used to monitor all system components, and
verify that all required hardware and software was running
properly. JAMM was also used to do real-time performance
monitoring and analysis, and proved to be very helpful in
tracking down some performance problems.

The following sensors, shown in Figure 4, were used:
CPU and memory sensors on every host, DPSS processes
monitors, clock synchronization monitors, TCP monitors
(retransmits and window size), and network switch / router
monitors. The TCP sensor we are using is a version of
tcpdump modified to generate NetLogger events when it
detects a TCP retransmission or a change in window size
[19].

Performance from the point of view of the client was
quite bursty. Sometimesimages arrived at 6 frames/sec, and
other times only 1-2 frames/sec. Asistypical in thistype of
environment, it was not clear what the source of the
problem was. Was the source of the burstiness the data
server, the compute server, the receiving host, the network,
or the viewing application? To do the performance analysis,
an event collector agent was started, and sensors on all
components in use by the application were located in the

Compute Cluster
Monitoring
sensor directory

Real-time (LDAP)
event

- collector

merged file
of event datg

Event Gateway I
e~
\/ \/
cPu Memory Y Network
Sensors)\ Sensors | Sensors

Storge Cluster Monitoring

Event Gateway

Memory Y Network
Sensors | Sensors

Figure 4: Use of JAMM with the Matisse Application

"subscribed”
events

application
monitoring
events

“Network-
Aware"
Applicatio

sensor summary data server
(e.g.: average network delay, etc.)

TCPD_RETRANSMITS } X

MPLAY_END_PUT_IMAGE }
MPLAY_START_PUT_IMAGE }
MPLAY_END_READ_FRAME }

MPLAY_START_READ_FRAME

)

VMSTAT_USER_TIME

]

VMSTAT_SYS TIME L e~ —
VMSTAT_FREE_MEMORY
Time(seconds) 310 311 312 313 314 315 316 317 318
dpss5.1bl.gov mems.cairn.net : dpss2.1bl.gov
dpss4.1bl.gov dpss3.1bl.gov

Figure 5: NetLogger real time analysis of JAMM managed Sensor data

directory service and subscribed to. This agent collected all
the monitoring data, which was then used as input to nlv,
the NetLogger visualization tool. nlv results are shown in
Figure5.

The graph shows time on the X axis, and events on the Y
axis. The vertical sloping lines show key events from a
trace of a data frame request through the entire system. The
greater the slope of the line, the more time a particular
event took. The graph also shows the results of the CPU,
memory, and TCP sensors. Note the correlation between
the TCP retransmit events and the large gap with no data
being received by the application. Also of interest is the
high level of system CPU usage on the receiving host,
shown by the line for event VMSTAT_SYS TIME. From
this we were able to narrow down the problem to either the
network or the receiving host.

The next question was why were there TCP
retransmissions? SNMP errors on the end switches and
routers were also monitored by JAMM, but no errors were
reported. This, along with the high system CPU load,
pointed us to the receiving host as the probable source of
the problems.

The client was reading data from four DPSS servers, so
we next used the I perf network performance test tool [10] to
compare TCP performance of a single TCP input stream
versus four parallel streams. To our surprise the aggregate
throughput for four streams was only 30 Mbits/sec
compared to 140 Mbits/sec for a single stream. This again

pointed to the receiving host as the source of the problem.
By using a single DPSS server instead of four servers, (and
thus one data socket instead of four), we were able to
increase the throughput to 140 Mbits/sec. The system CPU
load with only one data socket was much lower as well.

We are not yet certain why the performance using four
sockets is so much worse than using one socket, yet we
believe it has something to do with the amount of load the
gigabit ethernet card and device driver place on the system.
Interestingly, this behavior is only observed with wide-area
transfers; LAN throughput for both one and four data
streams are 200 Mbits/second. We plan to perform more
experiments to track down the cause of this behavior.

Note that this type of analysis could have been done
without the use of JAMM, but would have been much more
difficult. One would need to have an account on every
system, with superuser privileges (to run the tcpdump
sensor), and log into every system (13 in this example) and
start every sensor by hand, and then copy the results to one
place for analysis. Clearly this is more work than most
application users are willing to do.

Using JAMM, all that is required is for the application
user to start up a consumer and subscribe to the relevant
sensor data. JAMM also simplifies the job of a system
administrator to configure all the necessary sensors. The
NetLogger tools make analysis of this data quite
straightforward.

6.0 Current Status and FutureWork

At the present time all basic functionality of the main
JAMM components (sensor manager, port monitor, event
gateway, sensor directory, event collector, and several
sensors) is complete. We are currently adding the ability to
do filtering and summary data to the event gateway, and
working on security, access control, and policy mechanisms
as well. We are also developing a ULM to XML filter for
the gateway, so a consumer can request either format for
event data.

We are also developing a summary data service and
client API, as shown in Figure 4. For example, network
sensors publish summary throughput and latency datain the
directory service, which is used by a “network-aware”
client [21] to optimally set its TCP buffer size. The
summary data service might be part of the sensor directory,
could be a separate LDAP server, or could be built into the
gateways. We are exploring the performance and scal ability
issues of each of these approaches.

6.1 Security Issues

A distributed agent system such as JAMM creates a
number of security vulnerabilities which must be analyzed
and addressed before such a system can be safely deployed
on a production Grid. The users of such a system are likely
to be remote from the machines being monitored and to
belong to different organizations. Users want to find out
what sensors are running and how to subscribe to their
event data; users may need to cause sensor programs to be
started or to generate a higher level of data collection; and
finally users want to subscribe to sensor data via an event
gateway. In each case the domain that is being monitored is
likely to want to control which users may perform which
actions. Discovering what sensors are running and what
their gateways are is done via an LDAP lookup. Starting
new sensors is done by a request to a gateway, which then
contacts a sensor manager. Subscribing to an event stream
is done by establishing a network connection to a event
gateway. Our goal is to provide a single method for user
identification and authorization for each of these steps.

Current LDAP servers provide user/password style
protection to regions of the LDAP tree which can be used to
protect the lookup and publishing functions. Normally
these passwords are sent in clear text, but there are
SSL-enabled versions of LDAP, e.g. Netscape, where the
LDAP server has a key which can be used to encrypt the
connection to the client. Each LDAP server manages its
own set of users and passwords. This same user/password
scheme could be used to control the other access points.
However, this approach becomes awkward if the sensors
that a user is interested in are in multiple domains, because
each domain must assign user names and passwords.

Public key based X.509 identity certificates [9] are a
recognized solution for cross-realm identification of users.
When the certificate is presented through a secure protocol
such as SSL (Secure Socket Layer), the server side can be
assured that the connection is indeed to the legitimate user
named in the certificate. SSL libraries exist for HTTP
connections, RMI connections, or simply as C or Java
libraries to be used with socket code.

There are two existing packages that use identity
credentials for client side authentication and authorization
for remote resources. One is the Globus implementation of
the GSS-API (GSI) [8], which uses a protocol such as SSL,
to provide the server side with assurance that the
connection is to the legitimate user named in the certificate.
A server side map file is used to map the Globus X.509 user
identities to local user-ids which can be used by existing
access control mechanisms.

The second existing package is Akenti [20], which uses
vanilla X.509 identity certificates and SSL protocol to
authenticate remote users. In addition, Akenti provides a
way for the resource stakehol ders to remotely determine the
authorization for resource use based on components of the
users distinguished name or attribute certificates. These two
mechanisms can be combined to allow Globus clients in a
Grid environment to present Globus proxy ids, and
non-Globus clients to provide standard X.509 identity
certificates. At the server side, a domain can decide if they
want to use locally maintained access control lists or the
more distributed Akenti policy certificates.

User (consumer) access at each of the points mentioned
above (LDAP lookup and subscription to a gateway),
would require an identity certificate passed though a secure
protocol, e.g. SSL. A wrapper to the LDAP server and the
gateway could both call the same authorization interface
with the user's identity and the name of the resource the
user wants to access. This authorization interface could
return alist of allowed actions, or simply deny access if the
user is unauthorized.

Communication between the gateway and the sensor
managers also needs to be controlled, so that a malicious
user can't communicate directly with the sensor manager.
This is a simpler problem since a sensor manager only
needs to communicate with a small known set of gateway
agents and thus can just have a list of the Identity
Certificates for each agent to which it will allow a
connection.

We plan to add credential based security to the JAMM
system in the near future.

7.0 Conclusions

Monitoring is critical to providing a robust,
high-performance Grid environment. We have presented a
flexible, scalable architecture for managing monitoring

sensors for all components of the Grid, including hosts,
networks, and applications. The ability to access the event
data collected by the monitoring sensors will enhance or
enable a wide range of other Grid services, such as
scheduling, network tuning, performance analysis, QoS,
and so on.

8.0 Acknowledgments

We are greatly indebted to many members of the Grid
Forum (http://www.gridforum.org), from whom many of
the ideas in this paper came. In particular, discussions with
Rich Wolski, University of Tennessee, Ruth Aydit,
University of Illinois, lan Foster, Steve Tuecke, and Darcy
Quesnel, Argonne National Lab, Dennis Gannon,
University of Indiana, and Warren Smith, NASA Ames, all
contributed to the architecture described here. We also
thank Michael Amabile from the Sarnoff Corporation for
helping collect the NetLoggerized MEMS data viewing
application.

This work was supported by the Director, Office of
Science. Office of Advanced Scientific Computing
Research. Mathematical, Information, and Computational
Sciences Division under U.S. Department of Energy
Contract No. DE-ACO03-76SF00098. This is report no.
LBNL-45260.

9.0 References

[1] Abela J, T. Debeaupuis, “Universal Format for Logger

Messages’, |IETF Internet Draft, http://www.ietf.org/inter-
net-drafts/draft-abel a-ulm-05.txt

[2] case J, R. Mundy, D. Partain, B. Stewart, “Introduction
to Version 3 of the Internet-standard Network Manage-
ment Framework”, IETF RFC 2570, April 1999.

[3] CORBA, “Systems Management: Event Management Ser-
vice’, X/Open Document Number: P437,
http://www.opengroup.org/onlinepubs/008356299/

[4] DeRose, L., D. Reed, “SvPablo: A Multi-Language Archi-
tecture-Independent Performance Analysis System,” Pro-
ceedings of the International Conference on Parallel
Processing (ICPP'99), Fukushima, Japan, September 1999.

[5] Genersereth, M., S. Ketchpel, “Software Agents’, Com-
munications of the ACM, July, 1994.

[6] Fitzgerald, S, I. Foster, C. Kesselman, G. von Laszewski,
W. Smith, and S. Tueke, “A Directory Service for Config-
uring High-Performance Distributed Computations’. In
Proc. 6th IEEE Symp. on High Performance Distributed
Computing, August 1997.

[7] Globus: http://www.globus.org
[8] “The Grid: Blueprint for a New Computing Infrastruc-

ture”, edited by lan Foster and Carl Kesselman. Morgan
Kaufmann, Pub. August 1998. ISBN 1-55860-475-8.

[9]

[10]
[11]
[12]

[13]
[14]
[15]

[16]
[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

Housdly, R., W. Ford, W. Polk, D. Solo, “Internet X.509
Public Key Infrastructure”, IETF RFC 2459. Jan. 1999

Iperf: http://dast.nlanr.net/Projects/| perf/index.html
JDMK: http://www.sun.com/software/java-dynamic/

“Jini Distributed Event
http://www.sun.com/jini/specs/

Specification”,

IMX: http://java.sun.com/products/JavaM anagement/

Matisse: http://www.cnri.net/matisse/

Pablo Scaable Performance Tools,
http://vibes.cs.uiuc.edu/.
Peng, X, “Survey on Event Service”,

http://www-unix.mcs.anl.gov/~peng/survey.html
Performance Co-Pilot: http://oss.sgi.com/projects/pcp/

Supernet: http://www.ngi-supernet.org/

tcpdump: NetLogger version, http://www.ittc.ukans.edu
/projects/enable/tcpdump/

Thompson, M., W. Johnston, S. Mudumbai, G. Hoo, K.
Jackson, A. Essiari, “Certificate-based Access Control for
Widely Distributed Resources’, Proceedings of the Eighth
Usenix Security Symposium, Aug. 1999.

Tierney, B. J. Leg, B. Crowley, M. Holding, J. Hylton, F.
Drake, “A Network-Aware Distributed Storage Cache for
Data Intensive Environments’, Proceeding of IEEE High
Performance Distributed Computing conference
(HPDC-8), August 1999, LBNL-42896.
http://www-didc.Ibl.gov/DPSSY

Tierney, B., W. Johnston, B. Crowley, G. Hoo, C. Brooks,
D. Gunter, “The NetLogger Methodology for High Perfor-
mance Distributed Systems Performance Analysis’, Pro-
ceeding of I|EEE High Peformance Distributed
Computing conference, July 1998, LBNL-42611.
http://iwww-didc.|bl.gov/NetLogger/

Wahl M., T. Howes, S. Kille, “Lightweight Directory
Access Protocol (v3)”, IETF RFC 2251, Dec. 1997.

Wolski, R., N. Spring, J. Hayes, “The Network Weather
Service: A Distributed Resource Performance Forecasting
Service for Metacomputing,” Future Generation Comput-
ing Systems, 1999. http://nsw.npaci.edu/

Wolski, R.,, M. Swany, S. Fitzgerald, “White Paper:
Developing a Dynamic Performance Information Infra
structure for Grid Systems’, http://dast.nlanr.net/
GridForum/Perf-WG/white.PDF

