

Software Defined Networking for big-data science

Eric Pouyoul Chin Guok Inder Monga (presenting)

SRS presentation

November 15th, Supercomputing 2012

Acknowledgements

Many folks at ESnet who helped with the deployment and planning

 Sanjay Parab (CMU), Brian Tierney, John Christman, Mark Redman, Patrick Dorn among other ESnet NESG/OCS folks

Ciena Collaborators:

• Rodney Wilson, Marc Lyonnais, Joshua Foster, Bill Webb

SRS Team

Andrew Lee, Srini Seetharaman

DOE ASCR research funding that has made this work possible

ESnet: World's Leading Science Network

Lawrence Berkeley National Laboratory

Opportunities for innovation (1)

Elephant Flows: 'big-data' movement for Science, end-to-end

Lawrence Berkeley National Laboratory

Opportunity (2): Global Multi-Domain Collaborations like LHC

Software-Defined Networking

What is Software-Defined Networking? (as defined by Scott Shenker, October 2011)

ESnet

http://opennetsummit.org/talks/shenker-tue.pdf

"The ability to master complexity is not the same as the ability to extract simplicity"

"Abstractions key to extracting simplicity"

"SDN is defined precisely by these three abstractions

• Distribution, forwarding, configuration "

Fundamental Network Abstraction: a end-to-end circuit

Switching points, store and forward, transformation ...

Simple, Point-to-point, Provisonable

Lawrence Berkeley National Laboratory

New Network Abstraction: "WAN Virtual Switch"

na

Simple, Multipoint, Programmable

Configuration abstraction:

- Expresses desired behavior
- Hides implementation on physical infrastructure

It is not only about the concept, but implementation_

Expose 'flow' programming interface leveraging standard OF protocol

Lawrence Berkeley National Laboratory

Many collaborations, Many Virtual Switches

Lawrence Berkeley National Laboratory

SRS Demonstration Physical Topology

Virtual Switch Implementation: Mapping abstract model to the physical

Lawrence Berkeley National Laboratory

Example of ping across WAN virtual switch

Lawrence Berkeley National Laboratory

What does this mean for networking?

- Creation of a programmable network provisioning layer
- Sits on top of the "network OS"

Summary

- Powerful network abstraction
 - Files / Storage
- Benefits
 - Simplicity for the end-site
 - Works with off-the-shelf, open-source controller
 - Topology simplification
 - Generic code for the network provider
 - Virtual switch can be layered over optical, routed or switched network elements
 - OpenFlow support needed on edge devices only, core stays same
 - Programmability for applications
 - Allows end-sites to innovate and use the WAN effectively

Future Work

Harden the architecture and software implementation

- Move from experiment to test service
- Verify scaling of the model
 - Using virtual machines, other emulation environments
- Automation and Intelligent provisioning
 - Work over multi-domain
 - Wizards for provisioning
 - Dynamic switch backplane

Create recurring abstractions

- Virtual switch in campus
- How do we deal with a "network" of virtual switches

Questions – please contact imonga at es.net www.es.net

Thank you!

Lawrence Berkeley National Laboratory

Computer virtualization

