

ESnet
ENERGY SCIENCES NETWORK

BERKELEY LAB

Evaluating Network Buffer Sizerequirements for Very Large Data Transfers

Michael Smitasin

Network Engineer LBLnet Services Group Lawrence Berkeley National Laboratory

Brian Tierney

Staff Scientist & Group Lead Advanced Network Technologies Group Energy Sciences Network

NANOG 64

June 2015

Lawrence Berkeley National Laboratory

Energy Sciences Network

Connects Department of Energy National Laboratories to universities and research institutions around the world (LBNL's primary provider)

Many sites with 100G connections to ESnet today - Berkeley, Livermore, Stanford, Fermi, Brookhaven, Oakridge, Argonne

ESnet / DOE National Lab Network Profile

Small-ish numbers of very large flows over very long distances:

Between California, Illinois, New York, Tennessee, Switzerland

High-speed "Access" links - 100G sites connected to 100G core

Nx10G hosts, future Nx40G hosts, dedicated to Data Transfer

GridFTP / Globus Online / Parallel FTP

LHC detectors to data centers around the world (future 180Gbps)

Electron microscopes to supercomputers (20k – 100k FPS per camera)

Buffer Bloat at a glance

Premise: Big buffers = high latency, which is bad

Typically talking about relatively low-speed flows over short distances

Or, highly-multiplexed core links... 10,000+ simultaneous flows

Case of mouse flows vs. elephant flows

On Elephants and Packet Loss

We need to send lots of data over long distances. Insufficient buffers cause us to drop packets frequently, which hinders our throughput.

Throughput vs. increasing latency on a 10Gb/s link with <u>0.0046%</u> packet loss

Then "Big" Buffers = good?

By "big" we're still only talking **megabytes** of buffer per 10G port, not gigabytes.

Only addressing very large data transfers (TB, PB) + large pipes (10G & up) + long distances (50ms+) between small numbers of hosts.

Important to have enough buffering to ride out micro-bursts. A TCP flow may need to drop a packet or two to fit itself to available capacity, but to maintain performance we need to keep TCP from getting stuck in loss recovery mode.

How can we tell what's sufficient?

Test with tools that are:

- Readily Available
- Open Source
- Easy to Use
- Free

iperf3 in a simulated WAN

Add latency on hosts 1 and 2: tc qdisc add dev EthN root netem delay 25ms

Test Procedures:

Add a 25ms delay to each of hosts 1 and 2:

host1# tc qdisc add dev ethN root netem delay 25ms

host2# tc qdisc add dev ethN root netem delay 25ms

Start the iperf3 server on hosts **2** and **4**:

host2# iperf3 -s

host4# iperf3 -s

On host 3, begin a 2Gbps UDP transfer to host 4 to add congestion:

On host 1, begin a 10Gbps TCP transfer, 2 parallel streams for 30 seconds (first 5s omitted from results):

host1# iperf3 -c host2 -P2 -t30 -05

Test Results (example):

[4]	27.00-28.00	sec	276 MBytes	2.32 Gbits/sec	0	15.4 MBytes	
[6]	27.00-28.00	sec	145 MBytes	<pre>1.22 Gbits/sec</pre>	0	8.66 MBytes	
[SUM]	27.00-28.00	sec	421 MBytes	3.53 Gbits/sec	0		
[4]	28.00-29.00	sec	324 MBytes	2.72 Gbits/sec	5	12.5 MBytes	
[6]	28.00-29.00	sec	195 MBytes	<pre>1.64 Gbits/sec</pre>	7	9.61 MBytes	
[SUM]	28.00-29.00	sec	519 MBytes	4.35 Gbits/sec	12		
[4]	29.00-30.00	sec	201 MBytes	<pre>1.69 Gbits/sec</pre>	0	9.54 MBytes	
[6]	29.00-30.00	sec	126 MBytes	<pre>1.06 Gbits/sec</pre>	0	6.05 MBytes	
[SUM]	29.00-30.00	sec	328 MBytes	2.75 Gbits/sec	0	•	
	29.00-30.00	sec 	328 MBytes	2.75 Gbits/sec	0		
		sec 	328 MBytes Transfer	<pre>2.75 Gbits/sec Bandwidth</pre>	0 Retr		
[SUM]		sec sec				sender	
[SUM] [ID]	 Interval		 Transfer	 Bandwidth	Retr	sender receiver	•
[SUM] [ID] [4]		 sec	Transfer 5.85 GBytes	Bandwidth 1.68 Gbits/sec	Retr		•
[SUM] [ID] [4] [4]	Interval 0.00-30.00 0.00-30.00	sec sec	Transfer 5.85 GBytes 5.83 GBytes	Bandwidth 1.68 Gbits/sec 1.67 Gbits/sec	Retr 40	receiver	
[SUM] [ID] [4] [4] [6]	Interval 0.00-30.00 0.00-30.00 0.00-30.00	sec sec sec	Transfer 5.85 GBytes 5.83 GBytes 4.04 GBytes	Bandwidth 1.68 Gbits/sec 1.67 Gbits/sec 1.16 Gbits/sec	Retr 40	receiver sender	
[SUM] [ID] [4] [4] [6]	Interval 0.00-30.00 0.00-30.00 0.00-30.00 0.00-30.00	sec sec sec sec	Transfer 5.85 GBytes 5.83 GBytes 4.04 GBytes 4.01 GBytes	Bandwidth 1.68 Gbits/sec 1.67 Gbits/sec 1.16 Gbits/sec 1.15 Gbits/sec	Retr 40 39	receiver sender receiver	•

Average TCP results, various switches

Buffers per 10G egress port, 2x parallel TCP streams, 50ms simulated RTT, 2Gbps UDP background traffic

^[1] NI-MLX-10Gx8-M

^[2] Over-subscription Mode

^[3] Performance Mode

Tunable Buffers with a Brocade MLXe¹

Buffers per 10G egress port, 2x parallel TCP streams, 50ms simulated RTT, 2Gbps UDP background traffic

In the Real World @ 70ms RTT

Real World vs Simulated

70ms RTT, 2x parallel TCP streams, 2Gbps UDP background traffic

Can we detect insufficient buffers?

Congestion at first hop

Congestion at second hop

nuttcp test procedures

Simulate WAN connectivity by adding 25ms delay to each

host1# tc qdisc add dev eth1 root netem delay 25ms

host2# tc qdisc add dev eth1 root netem delay 25ms

Add 2Gbps UDP background traffic on link:

host4# iperf3 -s

host3# iperf3 -c host4 -u -b2G -t3000

Basic test parameters¹:

host2# nuttcp -S

host1# nuttcp -18972 -T30 -u -w4m -Ri300m/X -i1 host2

X= Burst Size (# of packets)

nuttcp results over various burst sizes

nuttcp conclusion

This will probably have no packet loss on smaller buffer switches:

While this will probably have some:

BUT only applies to where there is congestion. A small buffer switch that isn't congested won't be detectable with this method.

Host Queuing Alternatives in Linux kernel 3.11+1 Real World ~70ms RTT, ~9-12MB buffers

tc qdisc add dev EthN root [fq_codel | sfq | fq]

BERKELEY LAB

Additional Information

- A History of Buffer Sizing
 http://people.ucsc.edu/~warner/Bufs/buffer-requirements
- Jim Warner's Packet Buffer Page
 http://people.ucsc.edu/~warner/buffer.html
- Faster Data @ ESnet
 http://fasterdata.es.net
- Cisco Buffers, Queues & Thresholds on Cat 6500 Ethernet Modules
 http://goo.gl/gTyryX

Michael Smitasin mnsmitasin@lbl.gov Brian Tierney bltierney@es.net