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Abstract—Data set sizes are growing exponentially, so it is
important to use data movement protocols that are the most
efficient available. Most data movement tools today rely on
TCP over sockets, which limits flows to around 20Gbps on
today’s hardware. RDMA over Converged Ethernet (RoCE)
is a promising new technology for high-performance network
data movement with minimal CPU impact over circuit-based
infrastructures. We compare the performance of TCP, UDP, UDT,
and RoCE over high latency 10Gbps and 40Gbps network paths,
and show that RoCE-based data transfers can fill a 40Gbps path
using much less CPU than other protocols. We also show that
the Linux zero-copy system calls can improve TCP performance
considerably, especially on current Intel “Sandy Bridge”-based
PCI Express 3.0 (Gen3) hosts.

I. INTRODUCTION

Modern science is increasingly data-driven and collaborative
in nature. Large-scale simulations and instruments produce
petabytes of data, which is subsequently analyzed by tens
to thousands of scientists distributed around the world. Al-
though it might seem logical and efficient to colocate the
analysis resources with the source of the data (instrument
or a computational cluster), this is not the typical scenario.
Distributed solutions – in which components are scattered
geographically – are much more common at this scale, and the
largest collaborations are most likely to depend on distributed
architectures. Efficient protocols and tools are necessary to
move vast amounts of scientific data over high-bandwidth
networks in such collaborations.

The Large Hadron Collider1 (LHC), the most well-known
high-energy physics collaboration, was a driving force in the
deployment of high bandwidth connections in the research and
education world. Early on, the LHC community understood
the challenges presented by their extraordinary instrument in
terms of data generation, distribution, and analysis.

Many other research disciplines are now facing the same
challenges. The cost of genomic sequencing is falling dramat-
ically, for example, and the volume of data produced by se-
quencers is rising exponentially. In climate science, researchers
must analyze observational and simulation data sets located at
facilities around the world. Climate data is expected to exceed
100 exabytes by 2020 [9], [13]. New detectors being deployed
at X-ray synchrotrons generate data at unprecedented resolu-
tion and refresh rates. The current generation of instruments
can produce 300 or more megabytes per second and the next
generation will produce data volumes many times higher; in
some cases, data rates will exceed DRAM bandwidth, and
data will be preprocessed in real time with dedicated silicon.

1The Large Hadron Collider: http://lhc.web.cern.ch/lhc/

Large-scale, data-intensive science projects on the drawing
board include the International Thermonuclear Experimental
Reactor (ITER)2 and the Square Kilometre Array3, a massive
radio telescope that will generate as much or more data than
the LHC.

In support of the increasing data movement demands, new
approaches are needed to overcome the challenges that face
existing networking technologies. The ubiquitous Transmis-
sion Control Protocol (TCP) is known to have performance
problems over long-distance, high-bandwidth networks [8],
[19], [23]. With proper tuning, an appropriate congestion
control algorithm, and low-loss paths, TCP can perform well
over 10Gbps links, but at speeds of 40Gbps and above
CPU limitations become an issue. The system overhead of
single and parallel stream TCP at 10Gbps is capable of
fully using a core on modern processors, raising questions
about the viability of TCP as network speeds continue to
grow. Also, the administrative burden of ensuring proper TCP
tuning settings for various network scenarios has also been a
persistent challenge. Alternatives such as user space protocol
implementations like UDT [18] provide benefits in certain
cases but suffer from increased overhead due to user space
buffer copying and context switching, limiting their use for
high-performance applications.

Using a combination of intelligent network provisioning
and RDMA protocols, one can achieve significant gains over
existing methods to support efficient, high-performance data
movement over the WAN. Our initial results show that RoCE
(RDMA over Converged Ethernet) [5] over layer-2 circuits is
worth further evaluation and consideration.

II. BACKGROUND

A. Science Use Cases

The current state-of-the-art for bulk transfer of large scien-
tific data sets is to use tools such as Globus Online / GridFTP
that securely move data using parallel TCP streams. Using
these tools on properly tuned hosts, where there are no network
impediments such as an under-powered firewall appliance, one
should be able to fill a 10Gbps pipe. However, the best per-
stream performance one can get from any of todays TCP over
socket-based bulk data transfer tools on a 40Gbps host is
only around 13Gbps, for reasons described in the evaluation
section below. For many of todays use cases this is not an
issue, because a) most sites only have a 10Gbps connection,
and b) one can do many transfers in parallel to get around
this limitation. But in the not too distant future when all big

2ITER: http://www.iter.org/
3SKA: http://www.skatelescope.org/
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data sites have a 100Gbps connections, data sets are 10-100X
bigger, and some workflows require the ability to move a
single 100TB data set in just a few hours, this per-flow limit
will become an issue.

One example of such a workflow is the data processing
for the SKA telescope project mentioned above. The current
SKA design calls for a total of 2900 sensors in operation
and collecting data in 2020, for a total aggregate data rate
of 15,000Tbs! The data from the receivers will likely be
placed directly in Ethernet frames and sent to a correlator (data
processor) for filtering. The resulting filtered data rate will be
around 400Tbs, and this data will be sent to a supercomputer
center 1000km away for analysis. Clearly this will require
hosts with 100Gbps NICs and extremely efficient data transfer
protocols.

A more near-term example is the Belle II High Energy
Physics experiment currently under construction in Japan4.
This experiment will generate 1.8GB/s starting in 2016, for
a total of 250PB in its first 5 years, and this data will
be analyzed by scientists at 65 institutions in 17 countries,
with a full copy of the dataset sent to the US. This project
will also require more efficient data movement protocols and
tools than are available today. Furthermore, the high CPU
requirements for standard socket-based TCP mean both higher
power consumption and less CPU available for other tasks. As
green computing receives more and more attention, the use of
more efficient data transfer protocols will be desired.

B. Remote DMA

The InfiniBand Architecture (IBA) [3] and related RDMA
protocols have played a significant role in enabling low-latency
and high-throughput communications over switched fabric
interconnects, traditionally within data center environments.
RDMA operates on the principle of transferring data directly
from the user-defined memory of one system to another.
These transfer operations can occur across a network and can
bypass the operating system (OS), eliminating the need to copy
data between user and kernel memory space. Direct memory
operations are supported by allowing network adapters to
register buffers allocated by the application. This “pinning”
of memory prevents OS paging of the specified memory
regions and allows the network adapter to maintain a consistent
virtual to physical mapping of the address space. RDMA can
then directly access these explicitly allocated regions without
interrupting the host operating system.

Our RDMA implementations make use of the InfiniBand
Verbs, ibverbs, and RDMA Communication Manager, rd-
macm, libraries made available within the OpenFabrics En-
terprise Distribution [4]. OFED provides a consistent and
medium-independent software stack that allows for the de-
velopment of RDMA applications that can run on a number
of different hardware platforms. The IBA specification itself
supports both reliable (RC) and unreliable (UC) RDMA
connections. In addition, two different transfer semantics are
available: 1) “two-sided” RDMA SEND/RECEIVE references

4Belle II: http://belle2.kek.jp/

local, registered memory regions which requires posted RE-
CEIVE requests before a corresponding SEND, and 2) “one-
sided” RDMA READ/WRITE operations can transfer buffers
to and from memory windows whose pointers and lengths have
been previously exchanged. The transfer tools developed for
our evaluation use RDMA over RC and implement the RDMA
WRITE operation due to its lower signaling cost.

The emerging RDMA over Converged Ethernet (RoCE)
[5] standard lets users take advantage of these efficient com-
munication patterns, supported by protocols like InfiniBand,
over widely-deployed Ethernet networks. In effect, RoCE is
InfiniBand protocols made to work over Ethernet infrastruc-
ture. The notion of “converged Ethernet”, also known as
enhanced or data center Ethernet, includes various extensions
to the IEEE 802.1 standards to provide prioritization, flow
control and congestion notification at the link layer. Since
the InfiniBand protocols operate in networks that are virtu-
ally loss-free, the motivation for this is clear. The protocol,
however, does not directly require any of these extensions and
thus it is possible to use RoCE in WAN environments. Until
the recent introduction of RoCE, InfiniBand range extenders
such as Obsidian Longbow routers were needed to allow for
InfiniBand protocols over long distance network paths.

Certain path characteristics are necessary to effectively
use the RoCE protocol over wide-area networks. The path
should be virtually loss-free and should have deterministic
and enforced bandwidth guarantees. Even small amounts of
loss or reordering can have a detrimental impact on RoCE
performance. Note that the ability to do RoCE also requires
RoCE-capable network interface cards (NICs), such as the
Mellanox adapters used in our evaluation [1], [28].

C. Transfer Applications

A number of applications were used to collect the results
presented below. TCP benchmark results were obtained from
both the netperf [25] and nuttcp [27] tools. RoCE performance
results were collected using our own network benchmark
called xfer test, which allowed us to compare both TCP and
RoCE transfers from the same application. The ability to
perform file transfers over RoCE was also built into xfer test.

In addition to the zero-copy techniques supported by RDMA
protocols, we take advantage of the Linux kernel “splicing”
support in our xfer test implementation. The splice() and vm-
splice() system calls use a kernel memory pipe to “splice” or
connect file descriptors, which may refer to network sockets,
and memory pages while avoiding costly copying to and from
user space buffers. The netperf tool uses the related sendfile()
call, which uses splice, to provide a zero-copy test. The benefit
of these approaches is highlighted in our 40Gbps results.

The Globus Toolkit’s GridFTP [17] distribution was used
to provide performance numbers for a widely-used transfer
tool. Our previous work [22] developed an RDMA driver
within the Globus XIO [21] framework on which GridFTP
is built. However, due to overheads involved in enabling high-
performance RDMA within the existing XIO implementation,
we focus on our xfer test transfer tool in the following
evaluation. Related work [32], [33] has investigated extending
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XIO to make it more suitable for RDMA-style communication,
and we plan to take advantage of these advances in future
testing.

Beyond the logistics involved with traditional host tuning,
a number of important considerations govern the ability of
RDMA-based applications to achieve expected performance
over the WAN, especially as latency increases. It is well
understood that the transmission of buffers over the network
must be pipelined in order to keep enough data “in-flight”
and saturate the capacity of the given network path. TCP
solves this using a sliding window protocol tuned to the
RTT of the path. In contrast, applications using RDMA are
directly responsible for allocating, managing, and exchanging
buffers over networks that can have dramatically different
requirements, from interconnects with microsecond latencies
to RoCE over WANs with 100ms or greater RTTs.

There are two controllable factors that influence the wide-
area network performance of an RDMA application: 1) the
number and size of buffers, and 2) the number of RDMA op-
erations that are posted, or in transit, at any given time. In the
context of an RDMA communication channel, this corresponds
to the message size, or size of the memory window in RDMA
READ/WRITE operations, and the transmit queue depth, tx-
depth, respectively. In general, managing fewer, larger buffers
can result in less overhead for both the application and the wire
protocol, and we developed a configurable ring buffer solution
in support of our RDMA implementations that allowed us to
experiment with various buffer/message sizes for the transfer
of real data. The design of the application itself is tasked
with allocating adequate buffers and posting enough RDMA
operations based on the characteristics of the network path
in order to saturate the given link capacity. Depending on the
requirements of a particular application, either RDMA middle-
ware libraries or direct integration of the InfiniBand Verbs API
can be used. Although the details of these implementations are
outside the scope of this paper, we note that both our tools and
commonly available RDMA benchmarks allow for the explicit
tuning of message sizes and transmit queue depths.

III. EVALUATION

A. Overview

We first show our 10Gbps results, then our 40Gbps results.

B. 10Gbps Testing and Analysis

Our performance analysis of RoCE uses resources from
DOE’s Advanced Network Initiative5 (ANI) network and
testbed6, which includes a 100Gbps wave connecting the
National Energy Research Scientific Computing Center7

(NERSC) in Oakland CA to the Argonne Leadership Class
Facility8 near Chicago, IL.

The ANI Testbed, a public testbed open to any researcher, is
shown in Figure 1, includes high-speed hosts at both NERSC

5Advanced Network Initiative http://www.es.net/RandD/advanced-
networking-initiative/

6ANI Testbed http://ani-testbed.lbl.gov/
7National Energy Research Center http://www.nersc.gov
8Argonne Leadership Class Facility http://www.alcf.anl.gov
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Fig. 1: ANI 100Gbps Testbed Configuration

and ALCF. These results used two hosts at NERSC, each of
which has two 6-core Intel processors and 64GB of system
memory. These are all PCI Gen-2 hosts, which support a
maximum of 27Gbps IO per flow.

The NERSC hosts also each have a storage subsystem,
consisting of two performance RAID controllers. Each RAID
controller has two RAID 0 sets of four drives, for a total of
four RAID sets of four drives each. Each RAID set can achieve
400MB/sec sustained read or write, for a total of 1.6GB/sec
(12.8Gbps) per host.

All the 10Gbps hosts have a recent 2.6 Linux kernel, and
the 40Gbps hosts have a recent 3.3 Linux kernel. We ensured
that standard host and NIC driver tuning was performed to
ensure the best performance for each of our benchmarks. The
Maximum Transmission Unit (MTU) on each installed NIC
was set to 9000 bytes and Rx/Tx link layer flow control was
enabled by default. For the RoCE tests, the effective MTU
is limited to 2048 bytes as defined by the current RoCE
specification. Each of our experiments involved memory-to-
memory transfers to remove disk I/O as a potential bottleneck.

Note that this testbed, while very high performance, is not a
particularly accurate way to emulate a real campus networks.
In this testbed the hosts are connected directly to high-end
100Gbps Alcatel-Lucent Model SR 7750 border routers, which
have a large amount of buffer space. This may mask some
of the issues that would be seen when the endpoints are in
a campus network, with less-capable devices in the path, as
discussed below.

C. Transfer Application Baselines

We ran a series of tests to get baselines for our various ap-
plications when running single stream transfer over a 10Gbps
NIC with uncapped 100Gbps WAN capacity. These results
are summarized in Table I. nuttcp was chosen over iperf for
better reliability when performing UDP benchmarks. For both
UDP and TCP, each benchmark was able to achieve 9.9Gbps
over the 49ms path. Our RDMA testing with xfer test was
able to once again reach 9.7Gbps, which is approximately the
maximum achievable “goodput” possible with a 2KB MTU
when factoring in protocol overhead.

Single stream GridFTP tests were run for TCP, UDT, and
RDMA XIO drivers. Due to a combination of limited memory
bandwidth on the ANL Opteron systems and GridFTP/XIO
overheads, were were unable to achieve more than 9.2Gbps
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TABLE I: Application performance baselines for various transfer
tools over ANI testbed..

Tool Protocol Gbps
nuttcp TCP 9.9
nuttcp UDP 9.9
xfer test TCP 9.9
xfer test RDMA 9.7
GridFTP TCP 9.2
GridFTP UDT 3.3
GridFTP RDMA 8.1

application performance in the TCP case, and much worse
performance for both UDT and RDMA. UDT performance is
particularly poor due to the way it interacts with the XIO
framework, requiring extra memory copying. Due to these
factors, our remaining 10Gbps evaluation reports results for the
xfer test benchmark and uses nuttcp to introduce competing
TCP and UDP traffic.

D. RoCE with Competing Flows

An open question has been how RoCE behaves when shar-
ing paths with competing traffic. Our ability to perform path
provisioning over a configurable testbed environment gave us
an opportunity to understand how well RoCE performs when
sharing capacity with commodity TCP/UDP flows as well as
other competing RoCE transfers. Given the lack of converged
Ethernet support in the ANI testbed, we hypothesized that
competing traffic over shared bottlenecks would significantly
impact RoCE performance, if not completely impair the ability
to perform a successful RoCE transfer.

Our first test looked at this latter scenario where we inves-
tigate two 10Gbps RoCE transfers (two pairs of independent
10Gbps RoCE-capable NICs on separate hosts) interacting
over both an unconstrained and bandwidth capped circuit. Fig-
ure 2 shows that RoCE equally shares the available capacity in
both cases. With a 20Gbps WAN path, each RoCE flow easily
reaches 9.7Gbps over our 120 second test. When the WAN
path is capped to 10Gbps, we see each RoCE flow evenly
split the available capacity for the duration of the transfer,
and the flows do not interfere with each other. Surprisingly,
these results ran counter to our original hypothesis.

We expect this fair sharing between flows to continue as
more RoCE transfers are added as long as layer-2 flow control
(i.e. 801.2d PAUSE frames) remains enabled on both end hosts
and intermediate network elements. In the absence of link layer
flow control, OSCARS would need to provision dedicated
paths (e.g. separate VLANs) for each RoCE flow, or some
other QoS mechanism would be required to classify lossless
traffic from other flows, e.g, matching on the RoCE Ethertype
(0x8915).

Our next set of tests explored RoCE behavior when we
introduced a number of TCP flows competing for the available
shared link capacity. In this scenario, we had a 20Gbps cap on
the WAN path and the two 10Gbps RoCE flows as described
above, and we included an additional host with two 10Gbps
NICs that could generate a total of 20Gbps TCP traffic over
our shared path. This resulted in a total of 40Gbps (20Gbps
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RoCE and 20Gbps TCP) competing for 20Gbps over the
WAN. Three commonly deployed TCP congestion control
algorithms were investigated: Reno, CUBIC, and HTCP. In
each experiment, we varied the number of parallel streams
from 1 to 32, which were distributed evenly across the two
TCP traffic-generating NICs. In addition, we explored how
limiting the TCP congestion window to 16MB affected the
RoCE flows.

Figure 3 shows combined RoCE performance when com-
peting with each of the TCP cases just described. The overall
results show that RoCE maintains well over 50% of the avail-
able link capacity in all cases; however, there are some subtle
variations. When TCP is not limited by a small congestion
window, it has a relatively consistent influence on the RoCE
flows. Both CUBIC and HTCP have similar effects while Reno
is shown to be less aggressive. The RoCE performance for the
single stream TCP case is significantly higher since we have
10Gbps TCP instead of 20Gbps TCP in this one case. In all
other cases, both 10Gbps TCP NICs were involved. As more
streams are added in the CUBIC and HTCP cases, we see that
the parallel streams begin to interfere with one another, giving
a slight boost to RoCE performance. The opposite is true for
Reno where it is able to achieve slightly higher aggregate rates
with additional streams, although still not as aggressive as
CUBIC or HTCP.

As expected, a small TCP congestion window limited
the performance for fewer numbers of TCP streams. At 8
parallel streams and 16MB windows, we see the aggregate
rate matching that of the unconstrained, or autotuned, streams
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Fig. 4: RoCE performance with competing UDP traffic.

where Reno now matches the performance of both CUBIC
and HTCP for this particular 49ms path. As the number of
streams increase, we see the 16MB window cases continue to
follow the trend of the autotuned streams as each was able to
“ramp up” and remain in congestion avoidance with the side
effect of influencing other flows.

The situation changes dramatically when we introduced
increasing amounts of rate-controlled UDP traffic. As shown
in Figure 4, UDP effectively takes as much bandwidth as
requested, limiting the ability for the two 10Gbps RoCE flows
to remain competitive. In a few experiments when blasting
20Gbps UDP, we observed that one or both of the RoCE
transfers would stall, requiring a restart of the transfer tool. We
speculate that this is due to overflowing queues in the transit
network equipment, causing loss of RoCE frames before the
link layer flow control can reduce the sending rate of the RoCE
NICs.

E. Overhead Analysis

Beyond the potential to provide consistently good through-
put over WANs, RoCE gives high-performance transfer appli-
cations a mechanism to move large data sets with very little
system overhead. This fact ideally enables an efficient overlap
between communication and computation for a number of
data-intensive use cases. In our SC11 testbed, we have shown
how our xfer test tool can transfer at 9.7Gbps with as little as
1% CPU overhead. In this section, we extend our analysis to
look at both CPU and memory bus overheads for memory-to-
memory and disk-to-memory transfers.

The memory-to-memory tests were run as a 10Gbps RoCE
transfer using xfer test between a sending and receiving host,
exactly the same as in our performance evaluation described
above. For the disk-to-memory transfers, we took advantage
of the disk subsystem available on the ANI testbed hosts.
The disk array configuration provided in excess of 10Gbps
read throughput over 4 separate partitions, requiring the use
of 4 instances of xfer test running in parallel to perform
an equivalent 10G transfer test. We aggregated the results
obtained from each running instance in this case.

Our CPU numbers were collected using the nmon [26]
system monitoring utility. We report CPU load percentage as
a cumulative value over the number of cores present on the
system. For example, an 8 core system could have up to 800%

(a) CPU

(b) Data Cache Loads

Fig. 5: CPU and data cache overhead for TCP and RDMA transfers,
both memory-to-memory and disk-to-memory.
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Fig. 6: RoCE and TCP performance over a clean path.

total CPU load. To get a sense of memory bus usage, we took
advantage of the Linux perf tool [15] to profile our application
and report data cache load instructions issued by the CPU over
the duration of the transfer.

Figure 5 shows both the CPU load and number of data
cache loads used in each case, for both sending and receiving
side. For memory-to-memory transfers, the RoCE transfer
provides up to a 50X reduction in CPU usage and data
cache instructions compared to the TCP case within the same
application, again using around 1% of a single core. The
disk-to-memory results were dominated by the I/O operations
involved in reading from the disk subsystem. However, we
note that RDMA effectively eliminates the network commu-
nication overhead in this case, significantly reducing both the
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Fig. 7: Comparing RoCE performance with TCP over increasing loss.
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Fig. 8: Comparing RoCE performance with TCP over increasing reordering.

CPU and memory usage. We also note that our receive side
CPU values are slightly higher in the disk-to-memory tests
even though we are similarly writing to memory as in the
memory-to-memory tests. This is due to the fact that we have 4
instances of xfer test running in parallel in the disk-to-memory
tests, which naturally increases system overhead and inflates
our aggregate numbers. In future testing, we hope to evaluate
a disk subsystem capable of sustaining 10Gbps+ sequential
reads and writes in addition to an extended version of our
benchmark that operate across parallel data sources.

F. RoCE over Impaired Conditions

Poor network conditions can have a large impact on RoCE
performance. This fact has motivated the need for the pro-
visioning capabilities described above. To better quantify the
impact of less than ideal network conditions on RoCE trans-
fers, we made use of a Spirent XGEM [2] network impairment
device. Installed between two end hosts in our lab, the XGEM
allowed us to evaluate the performance of both RoCE and TCP
transfers while emulating a wide variety of WAN latency, loss,
and reordering cases. Distinct from our previous two testbed
environments, the systems used for these experiments were
compute nodes with 8-core Intel Xeon CPUs and 189GB of
RAM. Each ran a recent Linux 2.6 kernel with CUBIC as the
default congestion control algorithm, and appropriate host and
NIC driver tuning was also applied.

In Figure 6, we show that near line-rate RoCE and TCP
performance can be achieved over clean, loss-free conditions.
This graph also demonstrates the impact that message size

and transmit queue depth can have on RDMA transfer per-
formance over high-latency paths. In each of the experiments
that involved the XGEM, our RoCE benchmark used a mes-
sage size of either 64KB or 1MB with a tx-depth of 250.
Smaller messages have the benefit of incurring less costly
retransmissions due to loss or reordering are less costly. On
the other hand, there is also increased overhead from the
application’s perspective in managing many small buffers. This
also requires a much larger transmit queue depth for high-
latency paths in order to keep the network saturated. This
tradeoff is made apparent in the figure where we see less than
2Gbps performance in the 64KB case at 100ms RTT.

Figures 7 and 8 show the impact of both loss and reorder-
ing on RoCE and TCP performance, respectively. Increas-
ing amounts of loss severely impact both TCP and RoCE
performance as path latency increases. Reordering has less
of an impact on TCP where reassembly of the byte stream
is possible in the receive buffer; however, RoCE is affected
almost identically as in the loss cases. We also see that RoCE
transfers with larger RDMA message sizes are much more
prone to performance issues over even slight impairments and
little to no latency.

G. 40Gbps Testing and Analysis

Our 40Gbps testing used two Intel Sandy Bridge9 hosts with
PCIe 3.010 and Mellanox 40Gbps NICs. Each NIC is directly
connected to the 100Gbps router, and a 40Gbps layer 2 circuit

9Sandy Bridge Architecture: http://en.wikipedia.org/wiki/Sandy Bridge/
10PCIe 3.0: http://en.wikipedia.org/wiki/PCI Express#PCI Express 3.0
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TABLE II: 40Gbps performance results.

Tool Protocol Gbps Send CPU Recv CPU
netperf TCP 17.9 100% 87%
netperf TCP-sendfile 39.5 34% 94%
netperf UDP 34.7 100% 95%
xfer test TCP 22 100% 91%
xfer test TCP-splice 39.5 43% 91%
xfer test RDMA 39.2 2% 1%
gridftp TCP 13.3 100% 94%
gridftp UDT 3.6 100% 100%
gridftp RDMA 13 100% 150%

was configured to go from NERSC to ALCF and back, for a
total round trip latency of 94 ms.

Our methodology for 40Gbps was the same as with 10Gbps
above. One key addition is the use of zero-copy TCP tests
to highlight the limitations of traditional TCP transfers at
40Gbps speeds. We also make use of netperf in place of
nutttcp due to improved sendfile() and UDP benchmarking
support. A summary of each of our bandwidth tests is shown in
Table II including both the sender and receiver CPU utilization
as reported by nmon. Given the Non-Uniform Memory Archi-
tecture (NUMA) of our 40Gbps test hosts, we also ensured
that each application was bound to the appropriate NUMA
node to prevent CPU migrations, in in most cases binding the
thread of execution to a single core on both the sender and
receiver. For tests that use multiple threads (GridFTP, disk-
to-mem), the applications were able to bind to multiple cores
within a particular NUMA node.

In each of our three TCP application tests, none were able
to achieve more than 45% of the available link bandwidth.
The best result was obtained by xfer test at 22Gbps for a
single stream. The limiting factor is the overhead involved in
copying between kernel and user space buffers, and indeed our
perf profiles showed a majority of CPU time spent performing
memory copies. A clear advantage of using the zero-copy
calls in our benchmarks is the reduction in this memory copy
overhead, allowing single stream TCP performance to saturate
the 40Gbps links with significantly reduced CPU utilization at
the sending side (TCP-sendfile and TCP-splice cases).

GridFTP is again limited by the overheads within the current
XIO framework and achieves 13Gbps for both TCP and
RDMA cases. As opposed to sending a fixed amount of
allocated memory as in our benchmarks, GridFTP performs
additional copying into I/O vectors that get passed along the
XIO driver stack. In the RDMA case, the requirement to copy
these vectors into ring buffers within the XIO driver also
limits the performance we can achieve. We anticipate that
solutions such as EXIO as mentioned above, and the addition
of zero-copy support within XIO, will have a considerable
impact on single-stream GridFTP performance over high-
speed networks. Finally, we see that GridFTP using UDT
achieves a modest gain from the faster 40Gbps hosts but
remains an unviable option with the current implementation.
Note that single stream GridFTP was use for all results in this
paper. Slightly higher throughput was observed with multiple
streams, but the goal of this paper was to directly compare
single stream TCP with RoCE.
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Fig. 9: Performance of 40Gbps benchmarks over 120 seconds.

The xfer test RDMA test is the clear winner in terms of
achieving single-stream 40Gbps performance with minimal
system overhead. As in our 10G testing, reaching 40Gbps
speeds using RoCE involves ensuring the application has
allocated and posted adequate buffers to match the network
characteristics. At 94ms, the BDP of the path approaches
500MB, which requires the application to stage a substantial
amount of data to sustain 40Gbps throughput. We note that
our 40Gbps profiling results mirrored those performed at
10Gbps with relatively similar reductions in CPU and memory
utilization across tests.

For each of our benchmark tests, netperf and xfer test, we
plot the application “goodput” over 120s from start to finish in
Figure 9. With CUBIC and proper host tuning applied, each
TCP test is able to ramp-up in a relatively short amount of
time, under 20 seconds for each test. The RDMA transfer
is able to saturate the 40Gbps link nearly immediately and
provide the benefit of full link utilization while minimizing
wasted time on the network.

Lastly, we revisited the file transfer scenario from our earlier
10Gbps tests. Given the lack of a disk subsystem capable
of sustained throughput at 40Gbps, we relied on a memory-
backed filesystem, or “ramdisk”, to evaluate how our xfer test
tool could transfer a large data set. When reading from a file
descriptor, our tool invokes an additional thread of execution
that consumes extra CPU cycles and adds to memory bus
contention as the file contents is copied into a ring buffer
before being sent over the network. For the disk-to-mem tests
using TCP, the extra read overheads limited the transfer rate
to 16Gbps. The reduction in overheads for each of the TCP-
splice and RDMA cases improved this rate to 33Gbps. This
is effectively how quickly our tool was able to read from
the ramdisk into the ring buffer while simultaneously writing
to the network. Additional improvements could be made in
intelligently staging file data from disk into memory, and in
particular when adapting to the specifics of an actual disk
subsystem.

H. Summary of Results

Our evaluation, covering a number of experiments, has
shown that RoCE provides consistently good performance
while maintaining low system overhead for our transfer appli-
cation. Our experiments relied on a static network configura-
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tion with the ability to enforce bandwidth caps over the WAN
path, which allowed us to evaluate RoCE with competing
traffic. Our lab testbed used an XGEM network impairment
device to demonstrate how relatively subtle adverse network
conditions can negatively affect RoCE performance, motivat-
ing the need for building dedicated paths.

Contrary to our initial expectations, RoCE was able to
perform well with competing traffic over both shared and
bandwidth constrained paths. With standard layer-2 flow con-
trol enabled, we were able to simultaneously send both TCP
and other RoCE flows without seriously impairing RoCE
performance. Indeed, the RoCE transfers were able to compete
favorably with multiple parallel TCP streams.

However, we note that in many typical network deploy-
ments, link layer flow control may not be possible to enable
on all segments, especially at the edge of the network. When
testing with flow control disabled across the end host NICs in
the ANI testbed, we experienced much less robust behavior
in our RoCE transfers. In many cases, our RoCE tests would
stall when any significant amount of competing traffic was
introduced. We intend to extend our evaluation to explore
the role of both existing 802.1d flow control and converged
Ethernet extensions on RoCE transfers. In the absence of any
form of link layer flow control, our conclusion is that layer-2
services like OSCARS are necessary in order to differentiate
lossless traffic from other best-effort flows, particularly if the
best possible RoCE performance is desired.

Finally, we have shown that RoCE can scale well to 40Gbps
speeds over WAN paths. While other solutions that provide
good levels of TCP performance do exist, the ability of RoCE
to saturate high-latency WAN paths in conjunction with very
low system overhead makes it a compelling technology for
use in future network applications.

IV. RELATED WORK

Being a recently proposed standard, there has been relatively
little previous research in analyzing RoCE performance over
existing Ethernet infrastructure. A number of other RDMA and
zero-copy protocols not involving InfiniBand (IB) have been
proposed to run over Ethernet. These include technologies
such as Intel’s Direct Ethernet Transport (DET) [6] and ap-
proaches that use iWARP-enabled NICs [14], [28]. Compared
to RoCE and Infiniband, DET does not provide full OS-bypass
functionality with limited hardware support, while iWARP
remains bound to the limitations of TCP/IP.

On the other hand, there have been active efforts involved
with extending IB fabrics over WANs [12], [24] and com-
parisons of IB to existing 10Gbps Ethernet in high-latency
transfer scenarios [29]. These evaluations rely on IB extension
devices which limit WAN performance to approximately 8Gbs,
whereas our approach shows that RoCE can easily saturate
existing 10Gbps networks. Other related work has investi-
gated RDMA-capable storage protocols over WANs [10], [31]
and explored system-level benefits of RDMA interfaces over
10Gbps networks [7].

Considerable efforts have been made in modifying TCP’s
AIMD-based congestion control algorithm, resulting in nu-
merous variations for improving performance over WANs.

These include High-Speed TCP (HSTCP) [16] and FAST
TCP [30], among many others too numerous to mention here.
Others have investigated user space implementations such as
UDT [18], which provides reliability over UDP but suffer
from increased overhead, limiting their practical deployment in
high-speed networking applications. Newer transport protocols
such as SCTP [11] seek to improve performance through
multistreaming, while others allow features such as explicit
congestion feedback [20]. In all of these cases, improvements
have been incremental while failing to address new modes of
thinking in the transport of bulk data over long distances.

V. CONCLUSION

Scientific data sets are growing at exponential rates, and new
data movement protocols and system interfaces are needed to
keep up. TCP and UDP using traditional UNIX sockets use
too much CPU to be able to scale to the data rates needed for
tomorrows scientific workflows.

Our experience on ESnet’s 100Gbps testbed have shown
that alternative data movement solutions exist that work much
better than TCP/UDP over sockets. The first improvement
is possible through use of zero-copy system calls instead of
traditional send()/recv(), which can double your performance
using the latest versions of Linux on the latest hardware. The
second alternative is to use RoCE, which uses very little CPU
and should be able to scale well beyond speeds of 40Gbps.
However RoCE requires hardware support in the NIC, and a
congestion free layer-2 circuit to work well, but this may be
fairly common in the future.

Our experiments evaluated RoCE flows in a number of sce-
narios, including multiple RoCE flows in a single circuit, and
a mix of RoCE, TCP, and UDP flows in a single circuit. We
found that multiple RoCE flows work well over a single shared
path. This means that cluster-to-cluster transfers using RoCE
should be able to provision a single circuit, and not require
multiple circuits with additional configuration complexity.

We were surprised to learn that, to a point, RoCE and TCP
can co-exist on the same circuit rather well, at least in our
test environment. We believe this was due to a combination
of layer-2 flow control and the deep buffers available in the
100Gbps routers we were using, thus ensuring that there was
very little loss.
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