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Abstract 
In wide area computing systems, it is often desirable to create remote read-only copies (replicas) 
of files. Replication can be used to reduce access latency, improve data locality, and/or increase 
robustness, scalability and performance for distributed applications. We define a replica location 
service (RLS) as a system that maintains and provides access to information about the physical 
locations of copies. An RLS typically functions as one component of a data grid architecture. 
This paper makes the following contributions. First, we characterize RLS requirements. Next, we 
describe a parameterized architectural framework, which we name Giggle (for GIGa-scale Global 
Location Engine), within which a wide range of RLSs can be defined. We define several concrete 
instantiations of this framework with different performance characteristics. Finally, we present 
initial performance results for an RLS prototype, demonstrating that RLS systems can be 
constructed that meet performance goals. 

1 Introduction 
In wide area computing systems, it is often desirable to create remote read-only copies (replicas) 
of data elements (files).  Replication can be used to reduce access latency, improve data locality, 
and/or increase robustness, scalability and performance for distributed applications. A system that 
includes replicas requires a mechanism for locating them.  

We thus define the replica location problem: Given a unique logical identifier for desired 
content, determine the physical locations of one or more copies of this content. We further define 
a replica location service (RLS) as a system that maintains and provides access to information 
about the physical locations of copies. 

An RLS typically does not operate in isolation, but functions as one component of a data grid 
architecture [1-3] (Figure 1). Other components include: (1) the GridFTP protocol [4] for secure, 
efficient wide area data transfer; (2) a file transfer service for reliable transfer of files between 
storage systems; (3) the RLS; (4) a reliable replication service that provides coordinated, fault-
tolerant data movement and RLS updates; (5) a metadata service containing information that 
describes logical files; (6) one or more higher level data management services that provide such 
functionality as version management, master copy management, and workflow management; and 
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(7) application-oriented data services that implement application-specific semantics and policies 
such as preferences for replica selection or access.  

In our RLS design we focus on issues of scalability, reliability, and security—concerns that arise 
in large-scale distributed systems. We target systems that may have tens of millions of data items, 
tens or hundreds of millions of replicas, hundreds of updates per second, and hundreds or perhaps 
many thousands of storage systems, and that require high reliability and strong security.  
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Figure 1: Data Grid Architecture including the Replica Location Service 

 
This paper makes the following contributions to our understanding of Data Grid systems and data 
replication: 

• We introduce the notion of a RLS as a distinct component and characterize RLS 
requirements  

• We describe a parameterized architectural framework, which we name Giggle (for GIGa-
scale Global Location Engine), within which a wide range of RLSs can be defined 

• We define several concrete instantiations of this framework with different performance 
characteristics. 

• We present initial performance results for an RLS prototype, demonstrating that RLS 
systems can be constructed that meet performance goals. 

 

 

 



2 Requirements for a Replica Location Service 
We use the term logical file name (LFN) to denote a unique logical identifier for desired data 
content. The function of an RLS is to identify zero or more physical copies of the content 
specified by an LFN. Each physical copy is specified by a unique physical file name (PFN), such 
as a GridFTP [4] URL, that specifies its location on a storage system. This concept of a unique 
logical identifier for a desired data content is applicable only within the context of a virtual 
organization (VO) [5] that brings together users and resources in the pursuit of common goals. 

Discussions with high-energy physics and climate modeling application communities lead us to 
identify the following RLS requirements: 

1. Read-only data and versioning: Files do not change or change only infrequently and can 
be uniquely identified as distinct versions. While these assumptions do not apply 
universally, they characterize a large class of data-intensive applications. For example, in 
many scientific collaborations, data are prepared, annotated, and then published to the 
community. After this act of publication, files are immutable.  

2. Size: The system must scale to at least several hundred replica sites, 50 million logical 
files and 500 million total physical files or replicas. 

3. Performance: The system must handle up to 1000 queries and 200 updates per second. 
Average response time should be below 10 milliseconds, and maximum query response 
time should not exceed 5 seconds. 

4. Security: The RLS is most concerned with protecting the privacy and integrity of 
knowledge about the existence and location of data, while individual storage systems 
protect the privacy and integrity of data content. 

5. Consistency: An RLS need not provide a completely consistent view of all available 
replicas, in the following sense: if an RLS query returns to an authorized client only a 
subset of all extant replicas, or returns a list of replicas that includes “false positives” 
(i.e., putative replicas that do not in fact exist), the requesting client may execute less 
efficiently, but will not execute incorrectly. 

6. Reliability: The RLS should not introduce a single point of failure such that if any site 
fails or becomes inaccessible, the entire service is rendered inoperable. In addition, local 
and global state should be decoupled so that failure or inaccessibility of a remote RLS 
component does not affect local access to local replicas. 

3 The Giggle Replica Location Service Framework 
The framework that we have designed to meet the requirements listed above is based on the 
recognition that different applications may need to operate at different scales, have different 
resources, and have different tolerances to inconsistent replica location information. Thus, its 
design allows users to make tradeoffs among consistency, space overhead, reliability, update 
costs, and query costs by varying six simple system parameters (described in detail in Table 1). 
The Giggle framework is structured in terms of five basic mechanisms:  

• Independent local state maintained in Local Replica Catalogs (LRCs) 

• Unreliable collective state maintained in Replica Location Indices (RLIs) 

• Soft state maintenance of RLI state 

• Compression of state updates 

• Membership and partitioning information maintenance 



3.1 Local Replica Catalogs 
A local replica catalog (LRC) maintains information about replicas at a single replica site. An 
LRC must meet the following requirements:  

• Contents. It must maintain a mapping between arbitrary logical file names (LFNs) and the 
physical file names (PFNs) associated with those LFNs on its storage system(s). 

• Queries. It must respond to the following queries: 

o Given an LFN, find the set of PFNs associated with that LFN.  

o Given a PFN, find the set of LFNs associated with that PFN.  

• Local integrity. It is the responsibility of the LRC to coordinate the contents of the name map 
with the contents of the storage system in an implementation-specific manner.  

• Security. Information within the LRC may be subject to access control, and therefore must 
support authentication and authorization mechanisms when processing remote requests.  

• State propagation. The LRC must periodically send information about its state using a state 
propagation algorithm, S, to RLI(s), as discussed in the next two subsections. 

3.2 The Replica Index  
While the various LRCs collectively provide a complete and locally consistent record of all extant 
replicas, they do not directly support user queries about multiple replica sites. An additional index 
structure is required to support these queries.  

The Giggle framework structures this index as a set of one or more Replica Location Indices 
(RLIs), each of which contains a set of (LFN, pointer to an LRC) entries. A variety of index 
structures can be defined with different performance characteristics, simply by varying the 
number of RLIs and amount of redundancy and partitioning among the RLIs (see Figure 2 and 
Figure 3). 

Figure 2: A 2-level RLS layout.  

 



Figure 3: A hierarchical RLS topology. Note that the two top-level nodes may be redundant and hold 
exactly the same mappings. Alternatively, as explained in the text, we may partition state updates 

from LRCs to LRIs according to the namespace. In that case the two top-level nodes index different 
portions of the LFN namespace. 

 

 

Table 1: The six parameters used to characterize Giggle RLS structures, and some 
examples of possible values and their implications. See text for more details. 

G The number of RLIs 

 G=1 A centralized, non-redundant or partitioned index 

 G>1 An index that includes partitioning and/or redundancy 

 G ≥ N A highly decentralized index with much partitioning and/or redundancy 

PL The function used to partition the LFN name space 

 PL= φ No partitioning by LFN. The RLI(s) must have sufficient storage to record 
information about all LFNs, a potentially large number 

 PL=hash “Random” partitioning. Good load balance, perhaps poor locality 

 PL=coll Partitioning on collection name. Perhaps poor load balance, good locality 

PR The function used to partition the replica site name space 

 PR= φ No partitioning by site name. Indices have entries for every replica of 
every LFN they are responsible for. Potentially high storage requirements 

 PR=IP Partition by domain name or similar. Potential geographic locality 

R The degree of redundancy in the index space 

 R=1 No redundancy: each replica is indexed by only one RLI  

 R=G>1 Full index of all replicas at each RLI. Implies no partitioning, much 
redundancy/space overhead 

 1<R<G Each replica indexed at multiple RLIs. Less redundancy/space overhead 



C The function used to compress LRC information prior to sending  

 C= φ No compression: RLIs receives full LFN/site information 

 C=bloom RLIs receive summaries with accuracy determined by Bloom parameters 

 C=coll RLIs receive summaries based on collection distribution 

S The function used to determine what LRC information to send when 

 S=full Periodically send entire state (perhaps compressed) to relevant RLIs 

 S=partial In addition, send periodic summaries of updates, at a higher frequency. 

 

We can characterize a wide range of global index structures in terms of six parameters (G, PL, PR, 
R, S, C). As summarized in Table 1, four parameters (G, PL, PR, R) describe the distribution of 
replica information to RLIs and two define how information is communicated from LRCs (S, C). 
The parameter G specifies the total number of RLIs in the replica location service.  PL determines 
the type of logical file name space partitioning of information sent to the RLIs. The parameter PR 
indicates the type of LRC name space partitioning by which a particular RLI receives state 
updates from only a subset portion of all LRCs. R indicates the number of redundant copies of 
each RLI maintained in the replica location service. The soft state algorithm S indicates the type 
and frequency of updates sent from LRCs to RLIs. Finally, the parameter C indicates whether a 
compression scheme is used to reduce the size of soft state updates. 

Based on the redundancy, partitioning, and soft state mechanisms possible in the Giggle 
framework, we summarize requirements that must be met by a global replica index node (RLI).  

• Secure remote access: An RLI must support authentication, integrity and confidentiality and 
implement local access control over its contents. 

• State propagation. An RLI must accept periodic inputs from LRCs describing their state. If 
the RLI already contains an LFN entry associated with the LRC, then the existing information 
is updated or replaced. Otherwise, the index node creates a new entry. 

• Queries. It must respond to queries asking for replicas associated with a specified LFN by 
returning information about that LFN or an indication that the LFN is not present in the 
index. 

• Soft state. An RLI must implement time outs of information stored in the index. If an RLI 
entry associated with an LRC has not received updated state information from the LRC in the 
specified time out interval, the RLI must discard the entries associated with that LRC. 

• Failure recovery. An RLI must contain no persistent replica state information. That is, it must 
be possible to recreate its contents following RLI failure using only soft state updates from 
LRCs. 

3.3 Soft State Mechanisms and Relaxed Consistency 
We have argued that strong consistency is not required in the RLS, allowing us to use a soft state 
protocol [6-9] to send LRC state information to relevant RLIs, which then incorporate this 
information into their indices. 

Soft state is information that times out and must be periodically refreshed. There are two 
advantages to soft state mechanisms. First, stale information is removed implicitly, via time outs, 
rather than via explicit delete operations. Hence, removal of data associated with failed or 



inaccessible replica sites can occur automatically. Second, RLIs need not maintain persistent state 
information, since state can be reconstructed after RLI failures using the periodic soft state 
updates from LRCs. Various soft state update strategies with different performance characteristics 
can be defined.  

3.4 Compression  
Next, we consider compression of the soft state information communicated from an LRC to 
RLI(s). “Uncompressed” updates communicate all LFNs located at the LRC and allow the RLI(s) 
to maintain an index that is accurate, modulo time delays between when changes occur at the 
LRC and when updates are processed at the RLI(s). To reduce network traffic and the cost of 
maintaining RLIs, we can also compress LFN information in various ways, for example: 

• Using hash digest techniques such as Bloom filters [10, 11]. 

• Using structural or semantic information in LFNs, such as the names of logical collection that 
contain a group of logical files.  

3.5 Membership and Partitioning Information Maintenance 
The set of LRCs and RLIs that compose the RLS changes over time as components fail and new 
components join the distributed system. In this section, we describe the mechanisms that LRCs 
and RLIs use to perform service discovery to locate other services in the RLS. We also discuss 
how policies regarding the partitioning of the index among RLIs are specified and maintained. 
These mechanisms are compatible with the emerging Open Grid Services Architecture [12]. 

Each LRC and RLI server maintains self-descriptive metadata. At deployment time, each server 
is configured by the virtual organization with information about one or more components in the 
system. At bootstrap, each component sends its service metadata to these known locations. The 
RLS components can then use some service discovery mechanism to obtain information about 
other components (e.g., [13, 14]). In effect, each RLI acts as a registry, collecting information on 
LRCs and RLIs known to it and answering queries about them. An RLS client can discover the 
existence and service description of an RLI or LRC either statically, as part of the VO 
configuration, or by using a service registry technology.  

For a partitioned RLS, each RLS server must also discover the policies that define system 
behavior. These policies may be initialized at deployment time, but repartitioning may be 
required as servers fail or enter the RLS. One promising approach is to use consistent hashing 
[15, 16] for both namespace and replica site partitioning. Consistent hashing is a load-balanced, 
low-overhead mapping technique from a domain A to a codomain B that requires a minimal 
number of changes when the codomain changes.  In our context, the significance is that only a 
small number of LRCs that are directly affected by the departure of an RLI will need to reconnect 
to different RLIs.   

4 Implementation Approaches 
We now illustrate the application of the Giggle framework by describing five RLS 
implementation approaches.  

RLS0. Single RLI for all LRCs. Each LRC sends its full, uncompressed state to a single RLI.  
The obvious disadvantage of this scheme is its single point of failure. The six Giggle 
framework parameters (Table 1) in this case are: G=R=1 (and hence PL=PR=φ), 
S=all, C=φ. 

RLS1. LFN Partitioning, Redundancy, Bloom Filters. Figure 4 shows an RLS 
implementation that includes redundancy, with two copies of each index. Indexed 



information is partitioned based on the logical file namespace. Soft state updates are 
compressed using Bloom filters to summarize LRC state. The Giggle parameters are: 
G>1, R=2, PL=partition-on-LFN, PR=φ, S=partial, C=Bloom filtering. 
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Figure 4: A possible configuration of an RLS2 implementation. 

RLS3. Compression, Partitioning based on Collections. Figure 5 shows an implementation 
that includes both compression and partitioning of the logical file namespace based 
on domain-specific logical collections. The framework parameters are as follows: 
G>1, R=2, PL=coll, PR=φ, S=full, C=collection-name-based.  

 

RLS4. Replica Site Partitioning, Redundancy, Bloom Filters. Storage partitioning was 
shown in Figure 1. That configuration represents the following Giggle parameters:  
G=3, R=1, PL=φ, PR=IP, S=full, C=unspecified. 

RLS5. A Hierarchical Index. Multiple levels of RLIs may be included in an RLS (as shown 
in Figure 3). Thus, the Giggle framework supports a wide variety of RLS 
configurations that can be adapted dynamically for increased scalability, 
performance and reliability. 
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Figure 5: Structure of RLS3, which uses collection names for partitioning function. 



5 RLS Prototype Implementation 
Figure 6 shows the components of our RLS prototype, which we have implemented in C and 
tested on Solaris 8, Linux RH 6.1, 6.2 and 7.2. This prototype relies on Grid Security 
Infrastructure and the globus_io socket layer from the Globus toolkit [17] to provide a server 
front end to a relational database. The server is multithreaded and can be configured to act as an 
LRC and/or an RLI. Clients access the server via a simple RPC protocol that will soon be 
replaced by a SOAP interface. For convenient replacement of the relational database backend, our 
implementation includes an ODBC (Open Database Connectivity) layer, an API for database 
access. In addition to the libiodbc library, our implementation includes a myodbc layer that maps 
from ODBC to the mySQL database, which is used as the relational database backend for our 
prototype. The database contains several tables that implement {lfn, pfn} mappings. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: The layered design of the LRC/RLI server. 
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The server’s configuration includes information such as LRC soft state update frequency and 
timeout information for RLI entries. We have implemented complete and partial soft state updates 
from LRCs to RLIs and partitioning of the logical file namespace based on path name prefixes.  

At present, the prototype uses a static configuration for service discovery and maintenance of 
partitioning information.  The prototype does not currently implement compression. 

 

6 Performance of the RLS Prototype 
We present preliminary performance results for our prototype. We focus on two issues: the 
performance of basic operations on each server and the overhead of soft state updates between 
LRCs and RLIs.  

Figure 7 shows the performance of create, add, delete and query operations on an LRC server. A 
create operation defines an {lfn, pfn} mapping for a logical file name that is not currently 
registered in the RLS, while an add operation registers an additional mapping for an existing 
LFN. The delete operation deletes a single {lfn, pfn} mapping. The graph shows average 
operation times for different LRC database sizes computed over 5000 sequential operations. 
These measurements were run on a machine with dual 2.2 GHz processors and 1 GB of memory 
running RedHat Linux 7.2. We achieved rates of 1667 queries per second and approximately 67 
updates (creates, adds or deletes) per second when operations are issued from a single client 
thread. For the database sizes studied (up to 1 million entries), these operation times were 
relatively constant but did not include network latencies.  



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7:  Time to create, delete, add and query a LFN entry in LRC and to query a RLI. 
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Figure 8:  Time to for an LRC to send a complete soft state update to an RLI when there are one 
or two LRCS sending simultaneous updates.   
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Figure 8 shows the time to complete a soft state update from the perspective of the RLI when one 
or two LRCs are updating the RLI on a local area network. These soft state update timings are 
linear with the size of the LRC. For an LRC with 1 million entries, the soft state update time is 
6217 seconds, or 1.73 hours. When two LRCs simultaneously update an RLI, the time to 
complete one LRC update increases by approximately 50% due to concurrent updates on the RLI.  
These update tests measure the time for an LRC running on the dual-processor machine described 
above to update an RLI on a Sun blade 1000 with dual 750 MHz processors and 1 gigabyte of 
RAM running Solaris 8.  The second LRC in these tests is a slower Sun Ultra 5_10 running 
Solaris 2.6 with 128 K of RAM.   

Figure 9 shows the timings for complete soft state updates in the wide area.  These tests were run 
on the European DataGrid testbed.  The tests show up to five LRCs (three in Geneva and two in 
Pisa) sending soft state updates to a single RLI located in Glasgow.  The graph shows that wide 
area complete soft state update times increase both with the size of the LRCs and the number of 
LRCs sending updates.   

Both Figure 8 and Figure 9 show that using complete soft state updates is potentially quite slow 
and is not likely to scale well in production settings.  These results clearly indicate the need for 
techniques such as compression and/or incremental updates, in which only part of the LRC state 
information is sent to an RLI.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Wide Area Complete Soft State Update Performance. 
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In the following set of experiments, we evaluate the performance of one LCR server updating a 
single RLI server using full state updates only or a combination of full state updates and 
incremental updates. In the incremental case, updates are performed after 200 update operations 
are executed on the server or after a time interval of 30 seconds has elapsed, whichever occurs 
first.  
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Figure 10: Number of SQL Operations Generated at the RLI and LRC Servers for Complete 

and Incremental Updates. 

In Figure 10, we show the number of SQL operations generated on the LRC and RLI when the 
size of the LRC is 10000 entries.  With both types of soft state updates, the number of SQL 
operations on the LRC increases linearly with the update rate of LRC entries.  In the case where 
only complete soft state updates are sent to the RLI (labeled “incremental off” in the graph), the 
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Figure 11:  Number of Bytes Sent by the LRC to the RLI for Complete Soft State Updates 
and for Combined Incremental and Soft State Updates. 



number of SQL operations to update the RLI is constant with respect to the update rate of entries 
in the LRC, since the size of complete updates corresponds to the total size of the LRC.  When 
incremental updates are used in combination with occasional complete updates, we see fewer 
SQL statements at the RLI for lower update rates on the LRC, since only recently updated 
information is sent during incremental updates.  However, as update rates on the LRC increase, 
the benefit of performing incremental updates decreases, and for sufficiently high update rates, 
incremental updates generate more SQL overhead on the RLI than complete updates.   

In Figure 11, we show the total number of bytes sent from the LRC to the RLI for the two updates 
schemes. Fewer bytes are sent in the combined incremental and full state update scheme when the 
number of updates the LRC receives from clients is small.  However, when the rate of updates 
increases, the amount of data sent between the servers increases linearly and eventually surpasses 
the amount of data sent in the complete update scenario. 

The above results show that when the RLS is deployed, the servers need to be configured 
(statically or dynamically) to use the update scheme that is the most appropriate for the expected 
rate of updates to the LRC. 

Finally, we present some results for partitioning the RLI index space based on pattern matching 
of logical file names.  Recall that partitioning should reduce the number of bytes sent to each RLI 
and the number of SQL operations that each RLI needs to perform, at the cost of increased CPU 
overhead at the LRC to determine which RLI should receive a particular update. 

Figure 12 shows that the CPU overhead at the LRC is directly proportional to the number of 
patterns that the LRC must check to determine the receiving RLI.  In practice the number of 
patterns will depend on the logical filename structure and the granularity of the RLI partitioning. 
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We are evaluating additional partitioning methods in addition to our current implementation that 
uses regular expression matching.  We also envisage that communities might provide their own 
partitioning schemes based on their application-specific logical file namespaces. 

7 Related Work 
Much research has been done on data replication in distributed file systems and databases [18-
29]. A primary emphasis of that work was maintaining consistency and resolving conflicts among 
replicated data. Our work differs from these systems in restricting its focus to maintaining a 
distributed registry of replicas. Our RLS framework is flexible and can easily be tuned to the 
needs of a specific class of applications. The RLS can be used as a stand-alone service or as part 
of a larger data grid architecture that may provide higher level services, including a consistent 
replication service. 

Cooperative Internet proxy-caches [30] offer similar functionalities to our RLS. Hierarchical 
caching in proxy servers has been extensively analyzed [31, 32]. Two distinct solutions that do 
not use hierarchies are Summary Cache [11] and the Cache Array Routing Protocol [33, 34].  

Service and resource discovery have been a topic of extensive research. The most relevant to our 
current work are resource discovery systems in which resources are uniquely identified by an 
attribute (usually a globally unique name): CAN [35], Chord [36], Tapestry [37], Gnutella [38], 
Freenet [39], and Napster. An exception is Ninja’s Service Discovery Service [40, 41], in which 
services, identified by sets of attributes, are given a “name” built as a Bloom filter on a subset of 
attributes.  

Soft state techniques are used in various Internet services, for example RSVP [7, 9]. The Globus 
Toolkit’s Monitoring and Discovery Service (MDS-2) [42] and the proposed WSDA Hyper 
Registry [43] use soft state concepts to propagate information about the existence and state of 
Grid resources. 

We previously developed a replica catalog service [4] designed to provide a consistent view of 
replica location. Our initial implementation used a centralized catalog and is integrated with 
replica management tools that reliably create and delete replicas. This service has seen extensive 
use (e.g., [44]), but has scalability limitations. The Storage Resource Broker [45] offers a variety 
of replica creation and selection options that are managed through a logically centralized 
metadata catalog.  

8 Summary 
We have proposed Giggle, a flexible framework for constructing scalable replica location 
services in wide area environments. This framework allows us to tune the behavior of the RLS 
system based on the scale, performance, reliability and cost requirements of particular classes of 
applications. Initial performance results for a prototype implementation of a replica location 
service instantiation show excellent scalability within the local replica catalog component. These 
results also demonstrate the advantages of techniques for incremental soft state updates, 
compression and partitioning to reduce update costs on replica location index nodes. Our initial 
performance results are promising, and we will continue to evaluate RLS performance and to 
study various algorithms for state updates, compression and partitioning. 
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